Faculty of Mathematics

About the Faculty of Mathematics

Overview of Faculty

The Faculty of Mathematics consists of the Departments of Applied Mathematics, Combinatorics and Optimization, Pure Mathematics, and Statistics and Actuarial Science, and the David R. Cheriton School of Computer Science. The Faculty offers a four-year honours program leading to the degree Bachelor of Mathematics (BMath) in fields of study corresponding to each of the departments and the school, as well as in Mathematical Studies, Mathematics/Business, Mathematics/Chartered Professional Accountancy, and Mathematics/Financial Analysis and Risk Management. The Faculty also offers a four-year honours program leading to the degree Bachelor of Computer Science (BCS). In co-operation with the Faculty of Engineering, the Mathematics Faculty offers a program leading to the degree Bachelor of Software Engineering (BSE). In co-operation with the Faculty of Arts, the Mathematics Faculty offers a four-year honours program in Computing and Financial Management (BCFM).

The Faculty also offers graduate programs leading to the following degrees: Master of Mathematics (MMath), Masters of Mathematics for Teachers, and Doctor of Philosophy (PhD). Detailed information is contained in the University of Waterloo Graduate Studies Calendar.

Admission
Admission requirements and procedures for all plans are described in the Admissions section. Most students are admitted directly from secondary school. However, students who are enrolled in another faculty at the University of Waterloo, or at another university, may apply to transfer to the Faculty of Mathematics. Applicants should have strong academic records. (See Faculty Policies for additional policies concerning transfer students and transfer credits.) In addition, a student who has been away from formal education for more than two years may apply as a mature student. Although the University of Waterloo does not automatically offer admission to mature applicants, the admissions committee carefully considers previous academic records, résumés, and other biographical material before determining a candidate's suitability for university studies. Students must be able to demonstrate recent academic proficiency in Mathematics at the senior high school level. For applicants who are lacking the appropriate background, the Centre for Extended Learning offers an online course in Calculus.

Access to Programs, Plans, and Courses
Practical circumstance, such as significant budget shortfalls or the unavailability of qualified personnel, may result in restrictions in the choices available to students as compared with those listed herein or in other University publications. The University reserves the right to limit access to courses or programs/plans, and, at its discretion, to withdraw particular programs, plans/sub plans/options/minors, or courses altogether. In the event that existing resources make it necessary to limit admission to a plan, sub plan, option, or minor, the admission process will be based on competition for the spaces available.

Recognition of Excellence

Recognition of Excellence
Alumni Gold Medal
An alumni Gold Medal is presented annually, usually at spring convocation, to recognize the academic excellence of the Math Faculty's most outstanding undergraduate student.

K.D. Fryer Gold Medal
The K.D. Fryer Gold Medal is presented annually, at fall convocation, to a graduating Math student who best exemplifies academic excellence and good student citizenship.

Graduating "With Distinction - Dean's Honours List"
In recognition of outstanding academic records throughout their undergraduate career, all students who graduate with a Honours Bachelor of Computer Science (BCS) or Bachelor of Mathematics (BMath) degree, have a cumulative average (CAV) of at least 87%, and do not have any INC (Incomplete course work), IP (Course in progress), or UR (Grade under review) grades are eligible to graduate "With Distinction - Dean's Honours List." In addition to having this notation appear on their official University transcripts and diplomas, such students have their names displayed in gold on the walls of the MC corridor 4134.

Graduating "With Distinction"
In recognition of distinguished academic achievement throughout their undergraduate career, all students who graduate with a Honours BCS or BMath degree, either four-year honors or three-year general, a cumulative average (CAV) of at least 80%, and do not have any INC, IP, or UR grades are eligible to graduate "With Distinction." This notation appears on official University transcripts and diplomas.

Term Dean's Honours List
In recognition of outstanding academic achievement in an academic term, the designation "Term Dean's Honours List" is awarded to undergraduate Math students who satisfy all of the following criteria for the term:

- registered in an honours plan with a term average (TAV) of at least 87%;
- normally enrolled in at least 2.5 units of courses with numeric or letter grades (for winter and spring 2020, at least 1.0 unit must have numeric or letter grades);
- no failed or excluded courses;
- no INC, IP, or UR grades;
- at least 2.5 units of courses without a grade of WD.

For the winter and spring 2020 terms, a student is eligible to receive “Term Distinction” based on their average in all courses taken during a term while in a degree-granting program. In order to receive “Term Distinction”, the following must be true:

- The term must have at least one alpha/numeric grade in the average.
- A minimum term average of 80.0% must be achieved.
- An academic standing for the term of Promoted, Good, or Excellent.
• The term cannot have an INC, IP, MM, or UR. When these grades are resolved to alpha/numeric grades, the term’s average will be reviewed for eligibility.

Note: Students may be deemed ineligible at the discretion of the associate dean – undergraduate studies.

J. Alan George Award
The J. Alan George Award is presented annually, at the Math Graduation Ball, to a graduating Math student who best exemplifies student leadership and dedicated involvement in student affairs on campus for the benefit of Math students.

List of Academic Programs/Plans

List of Academic Programs/Plans

Co-op vs. Regular
Most of the Faculty’s plans are available in both the regular and co-operative systems of study. Plans that are offered only for co-op students are explicitly indicated in the list of plans below.

Honours Bachelor of Mathematics (BMath) Academic Plans
The Faculty offers the following honours plans leading to a BMath degree:

Actuarial Science plans:
- Actuarial Science
- Joint Actuarial Science
- Actuarial Science/Finance Option
- Actuarial Science/Predictive Analytics Option

Applied Mathematics plans:
- Applied Mathematics
- Joint Applied Mathematics
- Applied Mathematics/Scientific Computing
- Mathematical Physics
- Biology Specialization
- Economics Specialization
- Engineering Specialization: Fluids and Heat
- Engineering Specialization: Communication and Control
- Engineering Specialization: Heat and Mass Transfer
- Physics Specialization

Combinatorics and Optimization plans:
- Combinatorics and Optimization
- Joint Combinatorics and Optimization
- Mathematical Optimization (Business Specialization and Operations Research Specialization)

Computer Science BMath plans:
- Computer Science
- Joint Computer Science
- Artificial Intelligence Specialization
- Bioinformatics Specialization
- Business Specialization
- Computational Fine Art Specialization
- Digital Hardware Specialization
- Human-Computer Interaction Specialization
- Software Engineering Specialization

Computer Science also offers other plans. See below.

Pure Mathematics plans:
Pure Mathematics
Joint Pure Mathematics
Pure Mathematics/Teaching (co-op only)

Statistics plans:

Statistics
Joint Statistics
Biostatistics
Data Science

Plan run jointly by Actuarial Science and Pure Mathematics:

Mathematical Finance

Mathematics and Business plans, administered by a subcommittee of Combinatorics and Optimization, Computer Science, and Statistics and Actuarial Science:

Information Technology Management
Mathematical Economics
Mathematics/Business Administration
Mathematics/Chartered Professional Accountancy (co-op only)
Mathematics/Chartered Professional Accountancy – Finance Option (co-op only)
Mathematics/Financial Analysis and Risk Management (Chartered Financial Analyst Specialization and Professional Risk Management Specialization)

Plans administered by the Centre for Education in Mathematics and Computing:

Mathematics/Teaching (co-op only)

Plans administered by the Dean's Office:

Computational Mathematics
Mathematical Studies
Mathematical Studies - Business Specialization

Honours Bachelor of Computer Science (BCS) Academic Plans
Through the David R. Cheriton School of Computer Science, the Faculty offers the following honours plans leading to a BCS degree:

Computer Science
Joint Computer Science
Artificial Intelligence Specialization
Bioinformatics Specialization
Business Specialization
Computational Fine Art Specialization
Digital Hardware Specialization
Human-Computer Interaction Specialization
Software Engineering Specialization
Data Science

Double Degree Academic Plans
The School of Business and Economics at Wilfrid Laurier University and the Faculty of Mathematics at the University of Waterloo offer the following plan which leads to an Honours Bachelor of Business Administration (BBA) degree from Laurier and an Honours BMath degree from Waterloo.

Business Administration and Mathematics (co-op only)

The School of Business and Economics at Laurier and the David R. Cheriton School of Computer Science at the Waterloo offer the following plan which leads to an Honours BBA degree from Laurier and an Honours BCS degree from the Waterloo.

Business Administration and Computer Science (co-op only)
Honours Computing and Financial Management
The Bachelor of Computing and Financial Management (BCFM) Steering Committee administers this program, which leads to the Bachelor of Computing and Financial Management (BCFM) degree. The committee consists of faculty from the David R. Cheriton School of Computer Science in the Faculty of Mathematics and the School of Accounting and Finance in the Faculty of Arts.

Computing and Financial Management (co-op only)

Honours Software Engineering
The Software Engineering Program Board administers this program, which leads to the Bachelor of Software Engineering (BSE) degree. The board consists of faculty from the David R. Cheriton School of Computer Science in the Faculty of Mathematics and from the Department of Electrical and Computer Engineering in the Faculty of Engineering.

Software Engineering (co-op only)

Computer Science Plans
Computer Science (CS) major plans are:
- All BCS plans
- Computer Science BMath plans
- Any Joint Computer Science plan
- Computing and Financial Management and Software Engineering are considered CS major plans for the purpose of student access to CS courses, but admission and continuation are handled separately.

Admission to Specific Honours Academic Plans

Any honours student in good standing before their 3A term may enrol in the plan of their choice, subject to the limitations below. Students in 3A or later may be admitted to specific honours plans at the discretion of the relevant department or other academic unit, as appropriate.

1. The following plans are limited enrolment plans:
 - Actuarial Science (all plans)
 - Biostatistics
 - Business Administration and Computer Science Double Degree
 - Business Administration and Mathematics Double Degree
 - Computer Science
 - Data Science (all plans)
 - Financial Analysis and Risk Management
 - Information Technology Management
 - Mathematics/Business Administration
 - Mathematics/Chartered Professional Accountancy (all plans)
 - Mathematics/Teaching
 - Pure Mathematics/Teaching
 - Software Engineering

2. Students are not admitted to specific honours plans before their 2A term, except for the following plans:
 - Business Administration and Mathematics Double Degree
 - Computer Science (all major plans)
 - Financial Analysis and Risk Management
 - Information Technology Management
 - Mathematics/Business Administration
 - Mathematics/Chartered Professional Accountancy (all plans)

3. Students are normally admitted to Software Engineering in Year One.

4. Admission to Actuarial Science requires a special major average of at least 70% and no more than one excluded course. A student with no special major average requires a cumulative average of at
least 70% on at least 10 non-excluded courses, provided they have no failed courses. In addition, a minimum grade of 60% in MTHEL 131 is an admission requirement for the following plans:

- Honours Actuarial Science
- Honours Actuarial Science/Finance Option
- Honours Actuarial Science/Predictive Analytics Option
- Joint Actuarial Science
- Actuarial Science Minor

For Business Administration and Mathematics Double Degree students only, a minimum grade of C- in BUS 121W can be substituted for the MTHEL 131 requirement.

5. Both the Bachelor of Mathematics (Data Science) and Bachelor of Computer Science (Data Science) plans are limited enrolment plans, and students are not normally admitted to either plan before their 2A term. Admission to either plan requires a math major average of at least 65% (calculated over all math and computer science courses) and a CS major average of at least 70%. In addition, students must have completed at least one term in the Faculty of Mathematics with a typical course load for a Computer Science major, have credit for either CS 136 or CS 146, and must otherwise meet all criteria for admission to a Computer Science major plan.

Transfer into the BCS (Data Science) plan from outside Computer Science, including from the BMath (Data Science) plan, is a transfer into Computer Science, and is subject to policies imposed by Computer Science upon all transfer students, including enrolment limits.

Transfer into the BMath (Data Science) plan from other plans in the Faculty of Mathematics outside of Computer Science is also subject to enrolment limits. Transfer into BMath (Data Science) does not allow a student to then transfer automatically into Computer Science plans.

Bachelor of Computer Science and Bachelor of Mathematics Plan Combinations

Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations

The rules in this section do not apply to students seeking a Bachelor of Computing and Financial Management (BCFM), Bachelor of Science (BSc), or Bachelor of Software Engineering (BSE) degree. The list of eligible joint honours plans for Software Engineering students is available in the Software Engineering section of this Calendar.

Eligible Plan Categories (in plan-sequencing priority order – top highest, bottom lowest)

1. “Stand-alone” Math Faculty Honours plans
2. Math Faculty Joint Honours plans
 - BCS Joint can be combined with a BMath Joint Honours
3. Non-Math Joint Honours plans
 - BCS Joint and BMath Joint plans can be combined with a non-Math Joint Honours (acceptable non-Math Joint Honours plans are listed in the non-Math faculty section of the Calendar)
4. Math Faculty minors or options
5. Non-Math minors or options

Plans will be listed on a student’s diploma in the above order.

A BCS or BMath student’s plan must include one of the following:

- A stand-alone Math Faculty Honours plan, or
- Two Math Faculty Joint Honours plans, or
- A Joint BCS plan and a non-Math Joint Honours plan (acceptable non-Math Joint Honours plans are listed in the non-Math faculty section of the Calendar)

More plans may be added subject to the other restrictions of this section. The plan listed first on a graduating student’s diploma will dictate the student’s degree: if the first plan is a BCS plan, then the student will graduate with a BCS. If the first plan is a BMath plan, then the student will graduate with a BMath.

Math Faculty Joint Honours Plans
Joint honours academic plans both offered by the Math Faculty, in conjunction with the common degree requirements in Table I, require a total of 40 courses (20 units): the 10 mathematics courses in the Faculty core (outlined in Table II) plus the joint requirements of the two departments/school for a minimum of 26 mathematics courses, and at least 10 non-math courses (five units). Joint requirements for each department/school can be found in the corresponding department/school description.

Restrictions on Multiple-Plan Combinations

1. A stand-alone BCS plan cannot be combined with any BMath plan (including Joint Honours plans).
3. The BMath (Data Science) and BCS (Data Science) plans cannot be combined with any other Faculty of Mathematics Honours or Joint Honours plan, except that the BCS (Data Science) can make up the BCS component of the Business Administration and Computer Science double degree program.
4. With the exception of Mathematical Finance, which can be combined with another Actuarial Science and/or Pure Mathematics plan, no student may enrol in or graduate from two plans from the same group in the following list:

 - All plans offered by Actuarial Science
 - All plans offered by Applied Mathematics
 - All plans offered by Combinatorics and Optimization (including all Mathematical Optimization plans)
 - All plans offered by Computational Mathematics
 - All plans offered by Computer Science
 - All plans offered by Pure Mathematics
 - All plans offered by Statistics
 - All Math/Business plans other than Mathematical Economics

Specific Invalid Multiple-Plan Combinations

<table>
<thead>
<tr>
<th>Plan</th>
<th>Cannot be Combined With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics - Biology Specialization</td>
<td>Any plan offered by the Biology Department</td>
</tr>
<tr>
<td>Applied Mathematics - Economics Specialization</td>
<td>Any plan offered by the Economics Department</td>
</tr>
<tr>
<td>Applied Mathematics - Physics Specialization</td>
<td>Any plan offered by the Physics and Astronomy Department</td>
</tr>
<tr>
<td>Applied Mathematics/Scientific Computation</td>
<td>Any plan offered by Computational Mathematics</td>
</tr>
<tr>
<td>BCS or BMath (CS) - Bioinformatics Option or Specialization</td>
<td>Any plan offered by the Biology Department</td>
</tr>
<tr>
<td>BCS or BMath (CS) - Business Option or Specialization</td>
<td>A minor or option in Economics, Human Resources Management, or Management Studies</td>
</tr>
<tr>
<td>BCS (Data Science)</td>
<td>The Artificial Intelligence Option or Specialization</td>
</tr>
<tr>
<td>Business Administration and BCS/BMath double degree plans</td>
<td>Any plan similar to one appearing on the student's Laurier academic record transcript</td>
</tr>
<tr>
<td>Computer Science Joint (BCS or BMath)</td>
<td>A Joint Statistics</td>
</tr>
<tr>
<td>Computational Fine Arts Option or Specialization</td>
<td>Any plan offered by the Fine Arts Department</td>
</tr>
<tr>
<td>Computing Option</td>
<td>Computer Science Minor or Information Technology Management</td>
</tr>
<tr>
<td>Mathematical Economics</td>
<td>Any other plan offered by the Economics Department</td>
</tr>
<tr>
<td>Mathematical Physics</td>
<td>Any other plan offered by the Physics and Astronomy Department</td>
</tr>
<tr>
<td>Mathematical Studies (with or without a Business Specialization)</td>
<td>Any other stand-alone or Math Joint plan</td>
</tr>
<tr>
<td>Mathematical Studies - Business Specialization</td>
<td>A Management Studies Option or Minor</td>
</tr>
</tbody>
</table>

Academic Plans and Requirements

Degree Requirements for all Math students

Degree Requirements for all Math students
The Mathematics section of this Calendar contains regulations and requirements that must be satisfied to obtain a credential offered by the Faculty. All undergraduate students are also responsible for following the University Policies, Guidelines, and Academic Regulations section of this Calendar.

- **Table I – Degree Requirements**
- **Communication Skills Requirement**
- **Table II – Faculty Core Courses**
- **Honours Fallback Provision**

Table I - Degree Requirements

Legend

* The minimum co-op work-term course units for the Chartered Accountancy and Teaching plans are 2.0.
** WKRPT courses have a credit weight of 0.13 units. A student needs PD 11 (formerly PD 2) and three WKRPT courses to satisfy the 'four work report' requirement.
*** Students in Mathematical Studies plans are permitted up to 4.0 units of failed or excluded courses.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Four-Year Honours Plans</th>
<th>Double Degree Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-op</td>
<td>Regular</td>
</tr>
<tr>
<td>Minimum course units (excluding courses with the subject COOP, PD, and WKRPT)</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Minimum COOP course units</td>
<td>2.5*</td>
<td>0</td>
</tr>
<tr>
<td>Minimum PD course units</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>Minimum WKRPT course units</td>
<td>0.39**</td>
<td>0</td>
</tr>
<tr>
<td>Minimum non-math units</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Minimum Cumulative Average (CAV)</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Minimum major average (MAV) for the following major plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- All Applied Mathematics (AMATH) including Mathematical Physics, Combinatorics and Optimization (C&O) including Mathematical Optimization (MO), Pure Mathematics (PMATH), and Statistics (STAT) plans</td>
<td>65%</td>
<td>65%</td>
</tr>
<tr>
<td>- Mathematical Finance</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>- All other plans</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>In addition, a minimum special major average (SMAV) may apply. Please see the more comprehensive table of major averages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum failed or excluded course units (excluding courses with the subject COOP, PD, and WKRPT)</td>
<td>2.0***</td>
<td>2.0***</td>
</tr>
<tr>
<td>Maximum usable course attempts</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Minimum number of full-time terms</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>All degree candidates must satisfy a Communication Skills Requirement. See below.</td>
<td></td>
</tr>
</tbody>
</table>

The terms used in Table I are explained below
Term Description

<table>
<thead>
<tr>
<th>Term</th>
<th>Term Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus 1</td>
<td>Any of the following courses: MATH 116, MATH 117, MATH 127, MATH 137, MATH 147.</td>
</tr>
<tr>
<td>Calculus 2</td>
<td>Any of the following courses: MATH 118, MATH 119, MATH 128, MATH 138, MATH 148.</td>
</tr>
<tr>
<td>Course Attempt</td>
<td>Any course enrolment for which a student is assigned a final grade, including a grade of WD (Withdrawn after the drop deadline, no credit granted). Transfer credits from other institutions are also considered to be course attempts.</td>
</tr>
</tbody>
</table>

Cumulative Average (CAV)	See 'Averages for Math students' in Faculty Policies.
Excluded Course	A course taken between fall 2004 and spring 2013 either with a grade below 50, or that a student has voluntarily excluded.
Full-time Term	A term in which a student is enrolled in at least 1.5 course-attempt units.
Linear Algebra 1	Any of the following courses: MATH 106, MATH 114, MATH 115, MATH 136, MATH 146.
Major Average (MAV)	See 'Major averages for Math students' in Faculty Policies.

Math Courses	Courses with one of these prefixes: ACTSC, AMATH, CO, CS, MATBUS, MATH, PMATH, and STAT. Any course that is cross-listed with a course having one of these prefixes is also considered a math course, regardless of the label under which it is taken.
Non-math Courses	Courses with the prefix COMM and MTHEL, and those courses offered by other faculties (excluding courses cross-listed with math courses and courses listed above as math courses). COOP, PD, and WKRPT courses do not count as math or non-math courses.
Unit	The credit value associated with any course. All courses offered in the Faculty of Mathematics have a value of 0.5 units.

| Unusable Course Attempt | A course attempt is counted as unusable if the course is not a COOP, PD, or WKRPT course and one of the following conditions holds: |
| - a failing grade is assigned (grade <50, DNW, FTC, NCR, NMR, or WF) (see Grading System for descriptions), or |
| - a CLC is assigned to the course attempt |

Note: Starting in fall 2017, courses with WD grades will not count as unusable. However, if achieved prior to fall 2017, courses with WD grades will continue to count as unusable.

Communication Skills Requirement

Since strong communication skills are essential to academic, professional, and personal success, the Faculty places a particular emphasis on their development. With the exception of students in Software Engineering (SE), all students must successfully complete two communications courses:

- Students in Computing and Financial Management (CFM) must take two of: ENGL 109, ENGL 119, EMLS/ENGL 129R, or SPCOM 223 with a grade of at least 65 before enrolling in 4A.
- Students in Math/Chartered Professional Accountancy (CPA) must take SPCOM 111 (usually taken in term 1B) and AFM 211.
- Students in any Actuarial Science or Statistics plan must take one course chosen from List 1 (below), and ENGL 378/MTHEL 300. Students are expected to enrol in one of the courses in List 1 in their first term of study in the Faculty of Mathematics. A grade of at least 60% in a List 1 course is a prerequisite for enrolling in term 2A, and a grade of at least 70% is a prerequisite for ENGL 378/MTHEL 300. ENGL 378/MTHEL 300 is expected to be completed before enrolling in term 4A.
- Students in the Business Administration and Computer Science Double Degree plan or the Business Administration and Mathematics Double Degree plan must take one course chosen from List 1 (below), and BUS 362W. BUS 362W is expected to be completed before enrolling in term 4A. Students must complete a course from List 1 with a grade of at least 60% prior to enrolling in term 2A.
- Students in all other plans must take one course chosen from List 1, and one course chosen from List 2. Students are expected to enrol in one of the courses in List 1 in their first term of study in the Faculty of Mathematics, and must complete a course from List 1 with a grade of at least 60% prior to enrolling in term 2A. Students are encouraged to complete the second course by the end of term 2A.

List 1: First Course

The first course must be chosen from one of the following:

ugradcalendar.uwaterloo.ca/printing/?groupId=117
- **EMLS 101R** Oral Communications for Academic Purposes
- **EMLS 102R** Clear Communication in English Writing
- **EMLS 129R/ENGL 129R** Written Academic English
- **ENGL 109** Introduction to Academic Writing
- **SPCOM 100** Interpersonal Communication
- **SPCOM 223** Public Speaking

The first communication course should be taken on campus and must be completed with a grade of at least 60% prior to enrolling in a 2A term. Except for some students in the Double Degree plans, students are expected to enrol in one of these courses in their first term of study in the Faculty of Mathematics.

List 2: Second Course

The second course must be chosen from one of the following:

- Any additional course from List 1
- **EMLS 103R** Effective English Pronunciation
- **EMLS 104R** Reading and Listening for Academic Purposes
- **EMLS 110R** Communicating in Canadian Academic Contexts
- **ENGL 108B** Global English Literatures
- **ENGL 108D** Digital Lives
- **ENGL 119** Communications in Mathematics & Computer Science
- **ENGL 208B** Science Fiction
- **ENGL 209** Advanced Academic Writing
- **ENGL 210E** Genres of Technical Communication
- **ENGL 210F** Genres of Business Communication
- **ENGL 378/MTHEL 300** Professional Communications in Statistics and Actuarial Science
- **SPCOM 225** Interviewing
- **SPCOM 227** Leadership
- **SPCOM 228** Public Communication

Notes

1. Students enrolled in SE must satisfy the English Language competency requirement as set by the Faculty of Engineering.
2. SPCOM 111 will qualify as a List 1 course for students who are transferring from Accounting and Financial Management (AFM) and CPA.
3. Transfer credits may be used to satisfy the Communication Skills Requirement.
4. Students who do not complete the first course prior to their 2A term (except Computing and Financial Management students) will be restricted to enrolling in a course from the first list and two math courses until the first course requirement is met.

Table II – Faculty Core Courses

Some plans do not require all the courses in Table II. Please check your particular plan requirements to see if Table II applies.

One of

- **CS 115** Introduction to Computer Science 1
- **CS 135** Designing Functional Programs
- **CS 145** Designing Functional Programs (Advanced Level)

One of

- **CS 116** Introduction to Computer Science 2
- **CS 136** Elementary Algorithm Design and Data Abstraction
- **CS 146** Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

- **MATH 135** Algebra for Honours Mathematics
- **MATH 145** Algebra (Advanced Level)
MATH 106 Applied Linear Algebra 1
MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)

One of
MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 (Advanced Level)

One of
MATH 128 Calculus 2 for the Sciences
MATH 138 Calculus 2 for Honours Mathematics
MATH 148 Calculus 2 (Advanced Level)

One of
MATH 235 Linear Algebra 2 for Honours Mathematics
MATH 245 Linear Algebra 2 (Advanced Level)

One of
MATH 237 Calculus 3 for Honours Mathematics
MATH 239 Introduction to Combinatorics
MATH 247 Calculus 3 (Advanced Level)
MATH 249 Introduction to Combinatorics (Advanced Level)

One of
STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of
STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

Note

Computer Science (CS) majors normally start in CS 135. Students with strong aptitude may take CS 145 followed by CS 146. Students starting with CS 115 who wish access to CS major courses must take CS 136 after CS 116.

Honours Fallback Provision

Students who have, at any time, satisfied all of the following conditions may elect to graduate with a Bachelor of Mathematics (BMath) Three-Year General degree (regular):

1. Minimum of 15.0 total units passed
2. Minimum of 5.0 non-math units passed
3. Maximum of 5.0 units of unusable course attempts
4. Maximum of 4.0 units failed or excluded
5. Satisfied the Communication Skills Requirement
6. A minimum cumulative average (CAV) of 60%
7. Minimum 8.0 math units including the following courses passed

One of
CS 115 Introduction to Computer Science 1
CS 135 Designing Functional Programs
CS 145 Designing Functional Programs (Advanced Level)

One of
CS 116 Introduction to Computer Science 2
CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)

One of

MATH 106 Applied Linear Algebra 1
MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)

One of

MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 (Advanced Level)

One of

MATH 128 Calculus 2 for the Sciences
MATH 138 Calculus 2 for Honours Mathematics
MATH 148 Calculus 2 (Advanced Level)

One of

MATH 225 Applied Linear Algebra 2
MATH 235 Linear Algebra 2 for Honours Mathematics
MATH 245 Linear Algebra 2 (Advanced Level)

One of

MATH 207 Calculus 3 (Non-Specialist Level)
MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)
MATH 229 Introduction to Combinatorics (Non-Specialist Level)
MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of

STAT 220 Probability (Non-Specialist Level)
STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of

STAT 221 Statistics (Non-Specialist Level)
STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

Notes

1. Students are not normally awarded an Honours BMath degree if they already hold a General BMath degree. Petitions for exceptions to this rule will normally be considered only after an absence from the Faculty of several terms.
2. Students choosing the Honours Fallback Provision may not combine this choice with any option, minor, or specialization.

Actuarial Science
Overview
The Department of Statistics and Actuarial Science offers courses and plans in Actuarial Science, which is the application of mathematics and statistics to financial problems with particular emphasis on life insurance, casualty insurance, and employee benefit programs. The courses offered provide theoretical preparation for the courses of the Society of Actuaries and the Casualty Actuarial Society, and include studies of such subject areas as mathematics of finance, life contingencies, risk theory, and casualty ratemaking. Note: Students in Honours Actuarial Science and Honours Actuarial Science/Finance Option require a major average (MAV) of 70% to remain eligible to continue in their plan.

By carefully selecting their non-math courses, students can also gain valuable background knowledge in economics, finance, administration, and law.

Degree Requirements

Actuarial Science
Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

All of

- AFM 101 Introduction to Financial Accounting
- ACTSC 231 Introductory Financial Mathematics
- ACTSC 232 Life Contingencies 1
- ACTSC 331 Life Contingencies 2
- ACTSC 371 Introduction to Investments
- ACTSC 431 Loss Models 1
- ACTSC 446 Mathematics of Financial Markets
- AMATH 250 Introduction to Differential Equations
- ECON 101 Introduction to Microeconomics
- ECON 102 Introduction to Macroeconomics
- ENGL 378/MTHEL 300 Professional Communications in Statistics and Actuarial Science
- MTHEL 131 Introduction to Actuarial Practice
- STAT 330 Mathematical Statistics
- STAT 331 Applied Linear Models
- STAT 333 Applied Probability

One of

- STAT 340 Computer Simulation of Complex Systems
- STAT 341 Computational Statistics and Data Analysis

Three additional 400-level ACTSC courses.

Two additional courses chosen from

- Any 300-or 400-level ACTSC course
- AFM 424 Equity Investments
- STAT 431 Generalized Linear Models and their Applications
- STAT 433 Stochastic Processes
- STAT 441 Statistical Learning - Classification
- STAT 443 Forecasting

One additional 300-level or 400-level math course.

Notes
1. Students currently or previously enrolled in the Business Administration and Mathematics Double Degree plan may substitute:
 - BUS 121W for MTHEL 131.
 - BUS 127W for AFM 101.
BUS 283W for ACTSC 371.
BUS 393W for ACTSC 372 (to meet one of the additional 300- or 400-level ACTSC courses requirement).**
BUS 362W for ENGL 378/MTHEL 300.
BUS 473W for AFM 424.
ECON 120W for ECON 101.
ECON 140W for ECON 102.
* MTHEL 131 is strongly recommended for students with an interest in Actuarial Science.
** Non-math courses, even when used as substitutions for Math courses, are not to be included as Math courses in counts and averages. See Table I.

2. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - AMATH 350 for AMATH 250.
 - STAT 371 for STAT 331.

3. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333, and STAT 373 is not an acceptable substitute for STAT 331.

Actuarial Science/Finance Option
This plan has the same course requirements as Honours Actuarial Science with the following additional requirements:

One of
 - **AMATH 242/CS 371** Introduction to Computational Mathematics
 - **CS 370** Numeric Computation

All of
 - **AMATH 102** Introduction to Managerial Accounting
 - **ACTSC 372** Corporate Finance
 - **ACTSC 445** Quantitative Enterprise Risk Management
 - **CS 476** Numerical Computation for Financial Modeling
 - **STAT 340** Computer Simulation of Complex Systems

Note
Students currently or previously enrolled in the Business Administration and Mathematics Double Degree plan may substitute:

- BUS 247W for AMATH 102.
- BUS 393W for ACTSC 372.
- BUS 473W for AFM 424.

Actuarial Science/Predictive Analytics Option
This plan has the same course requirements as Honours Actuarial Science with the following additional requirements:

All of
 - **CS 330** Management Information Systems
 - **STAT 341** Computational Statistics and Data Analysis
 - **STAT 431** Generalized Linear Models and their Applications
 - **STAT 441** Statistical Learning - Classification
 - **STAT 443** Forecasting

One of
ACTSC 433 Analysis of Survival Data
STAT 437 Statistical Methods for Life History Analysis

One of

STAT 440 Computational Inference
STAT 442 Data Visualization

Joint Actuarial Science

See [Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations](https://www.uwaterloo.ca) for a description of joint plan requirements. Note that both majors designated in such joint plans must be disciplines within the Faculty of Mathematics.

One of

MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)

All of

AFM 101 Introduction to Financial Accounting
ACTSC 231 Introductory Financial Mathematics
ACTSC 232 Life Contingencies 1
ACTSC 331 Life Contingencies 2
ACTSC 431 Loss Models 1
ACTSC 446 Mathematics of Financial Markets
ENGL 378/MTHEL 300 Professional Communications in Statistics and Actuarial Science
MTHEL 131 Introduction to Actuarial Practice
STAT 330 Mathematical Statistics
STAT 333 Applied Probability

Three additional courses chosen from

Any 300- or 400-level ACTSC course
AFM 424 Equity Investments

Notes

1. Students currently or previously enrolled in the Business Administration and Mathematics Double Degree plan may substitute:
 - BUS 121W for MTHEL 131.*
 - BUS 127W for AFM 101.
 - BUS 283W for ACTSC 371.
 - BUS 362W for ENGL 378/MTHEL 300.
 - BUS 393W for ACTSC 372.
 - BUS 473W for AFM 424.
 * MTHEL 131 is strongly recommended for students with an interest in Actuarial Science.

2. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.

3. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333, and STAT 373 is not an acceptable substitute for STAT 331.

Mathematical Finance

The Mathematical Finance plan is offered jointly by the Departments of Statistics and Actuarial Science and of Pure Mathematics.

Students in this plan must fulfill all the requirements in [Table I](#) and [Table II](#). This must include at least 26 math courses, and the following specific requirements:

One of
MATH 247 Calculus 3 (Advanced Level)
MATH 237 Calculus 3 for Honours Mathematics (requires permission of department)

All of

AFM 101 Introduction to Financial Accounting or BUS 127W Introduction to Financial Accounting
AFM 102 Introduction to Managerial Accounting or BUS 247W Managerial Accounting
AFM 131/ARBUS 101 Introduction to Business in North America or BUS 111W Understanding the Business Environment
ACTSC 231 Introductory Financial Mathematics
ACTSC 371 Introduction to Investments
ACTSC 372 Corporate Finance
ACTSC 445 Quantitative Enterprise Risk Management
ACTSC 446 Mathematics of Financial Markets
AMATH 242/CS 371 Introduction to Computational Mathematics or CS 335 Computational Methods in Business and Finance
AMATH 250 Introduction to Differential Equations or AMATH 350 Differential Equations for Business and Economics
ECON 101 Introduction to Microeconomics or ECON 120W Introduction to Microeconomics
ECON 102 Introduction to Macroeconomics or ECON 140W Introduction to Macroeconomics
ECON 201 Microeconomic Theory for Business and Policy or ECON 260W Intermediate Microeconomic Analysis for Management
PMATH 351 Real Analysis
PMATH 450 Lebesgue Integration and Fourier Analysis
PMATH 451 Measure and Integration
STAT 330 Mathematical Statistics
STAT 331 Applied Linear Models
STAT 333 Applied Probability
STAT 443 Forecasting

One of

AMATH 351 Ordinary Differential Equations 2
CO 250 Introduction to Optimization
PMATH 352 Complex Analysis

One of

AMATH 353 Partial Differential Equations 1
CO 372 Portfolio Optimization Models
CS 476 Numeric Computation for Financial Modeling
PMATH 453 Functional Analysis

Notes

1. MATH 147 and MATH 148 provide highly desirable background for students in the Mathematical Finance plan.
2. W courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.
3. AMATH 350 is an antirequisite of AMATH 351 and AMATH 353, and choosing this course limits selection in the last "One of" list.
4. Students enrolled in the Business Administration and Mathematics Double Degree plan:
 o may substitute BUS 283W for ACTSC 371
 o may substitute BUS 393W for ACTSC 372
 o are exempt from taking STAT 443, but can count it under the "One of AMATH 353, CO 372, CS 476, PMATH 453" if they choose to take it.

5. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 o STAT 371 for STAT 331.
Actuarial Science Minor

This minor is only open to students within the Faculty of Mathematics. Admission to the minor in Actuarial Science requires an Actuarial Science special major average of at least 70%. A student with no Actuarial Science special major average will be admitted with a cumulative average of at least 70% on at least 10 non-excluded courses, provided they have no more than one failed or excluded course.

All of

- ACTSC 231 Introductory Financial Mathematics
- ACTSC 232 Life Contingencies 1
- ACTSC 331 Life Contingencies 2
- ACTSC 371 Introduction to Investments
- ACTSC 431 Loss Models 1
- AFM 101 Introduction to Financial Accounting
- MATH 237 Calculus 3 for Honours Mathematics or MATH 247 Calculus 3 (Advanced Level)
- MTHEL 131 Introduction to Actuarial Practice
- STAT 330 Mathematical Statistics
- STAT 333 Applied Probability

Notes

1. Students currently or previously enrolled in the Business Administration and Mathematics Double Degree plan may substitute:
 - BUS 121W for MTHEL 131.
 - BUS 283W for ACTSC 371.*
 - BUS 127W for AFM 101.
 * Non-math courses, even when used as substitutions for Math courses, are not to be included as Math courses in counts and averages. See Table I.

2. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333.

Applied Mathematics

Overview

Mathematics and science are intimately connected and advances in one have often stimulated new research areas in the other. Applied mathematics provides a bridge between these two fields through the construction and analysis of mathematical and computational models. Initial efforts in applied mathematics focused primarily on problems in physics and engineering, but applied mathematics approaches are now used widely in many areas of science, health, technology, business, and public policy. Mathematical models generate insight into a wide variety of phenomena and provide a foundation for modern research in a broad range of disciplines.

Our undergraduate plan in Applied Mathematics focuses on the development of a variety of differential equation-based models. These yield mathematical and computational descriptions of dynamic phenomena: from the motion of ocean waves, to the control of aircraft flight, to the volatile price of stock options. The Applied Mathematics plan builds on the fundamental courses in calculus and linear algebra and offers a variety of core courses in ordinary differential equations, partial differential equations, and computational mathematics. These courses, along with an introduction to physics, provide a foundation for modeling across a wide range of domains. This breadth is represented by upper-year Applied Mathematics courses that focus on physics (quantum mechanics, general relativity, fluid dynamics), biology, earth science, and engineering (control theory and signal processing). Additional courses provide a deeper understanding of the mathematical theory on which mathematical and computational models are based, the computational methods used to formulate and investigate models, and the scientific understanding of how we can learn from these models.

As part of their plan, Applied Mathematics students acquire expertise in a chosen application area. The Applied Mathematics plans allow formal recognition of these specializations: these plans are each composed of a selection of courses in an application area. Students with a strong interest in theoretical physics can pursue our Mathematical Physics plan, offered jointly with the Department of Physics and Astronomy.

Degree Requirements
Applied Mathematics

Legend
*AMATH 250 can be substituted with consent of the department
**PHYS 111 can be substituted with a grade of at least 70%

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

All of

- AMATH 231 Calculus 4
- AMATH 242/CS 371 Introduction to Computational Mathematics
- AMATH 251 Introduction to Differential Equations (Advanced Level)*
- AMATH 332/PMATH 332 Applied Complex Analysis
- AMATH 342 Computational Methods for Differential Equations
- AMATH 351 Ordinary Differential Equations 2
- AMATH 353 Partial Differential Equations 1
- PHYS 121 Mechanics**

Three 400-level AMATH courses.

One additional 300- or 400-level AMATH course.

Recommended course

- AMATH 331/PMATH 331 Applied Real Analysis

A subject concentration consisting of four additional courses (2.0 units), all from any one department in the Faculties of Science or Engineering, or the Department of Economics. Alternatively, a set of four courses (2.0 units) from another department may be eligible, subject to approval by the Applied Mathematics undergraduate advisor.

Five additional math courses: (some suggested courses are listed below)

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)
- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)
- CS 475 Computational Linear Algebra
- PMATH 334 Introduction to Rings and Fields with Applications
- PMATH 336 Introduction to Group Theory with Applications
- PMATH 365 Differential Geometry
- STAT 331 Applied Linear Models
- STAT 333 Applied Probability

Joint Applied Mathematics

Legend
*AMATH 250 can be substituted with consent of the department.

See Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations for a description of joint plan requirements. Note that both majors designated in such joint plans must be disciplines within the Faculty of Mathematics.

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

All of
AMATH 231 Calculus 4
AMATH 242/CS 371 Introduction to Computational Mathematics
AMATH 251 Introduction to Differential Equations (Advanced Level)*
AMATH 332/PMATH 332 Applied Complex Analysis
AMATH 351 Ordinary Differential Equations 2
AMATH 353 Partial Differential Equations 1
PHYS 121 Mechanics

Three 400-level AMATH courses.

A subject specialization consisting of four additional courses (2.0 units) from any one department in the faculties of Science or Engineering, or the Department of Economics.

Alternatively, a set of four courses (2.0 units) from departments in other Faculties may be eligible, subject to approval by the Applied Mathematics undergraduate advisor.

Recommended course
AMATH 331/PMATH 331 Applied Real Analysis

Applied Mathematics with Scientific Computing

Legend
AMATH 250 can be substituted with consent of the department.

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of

MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)

All of

AMATH 231 Calculus 4
AMATH 242/CS 371 Introduction to Computational Mathematics
AMATH 251 Introduction to Differential Equations (Advanced Level)*
AMATH 342 Computational Methods for Differential Equations
AMATH 442 Computational Methods for Partial Differential Equations
CS 230 Introduction to Computers and Computer Systems
CS 234 Data Types and Structures
CS 475 Computational Linear Algebra
STAT 341 Computational Statistics and Data Analysis

One of

CO 250 Introduction to Optimization
CO 255 Introduction to Optimization (Advanced Level)

Two 400-level AMATH courses.

Two additional 300- or 400-level AMATH courses.

Recommended 300- or 400-level AMATH courses

AMATH 331/PMATH 331 Applied Real Analysis
AMATH 332/PMATH 332 Applied Complex Analysis
AMATH 351 Ordinary Differential Equations 2
AMATH 353 Partial Differential Equations 1
AMATH 453 Partial Differential Equations 2
AMATH 455 Control Theory
AMATH 456 Calculus of Variations
AMATH 463 Fluid Mechanics

Recommended additional math courses
Mathematical Physics

Legend

*AMATH 250 can be substituted with consent of the department.

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 20 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

All of

- AMATH 231 Calculus 4
- AMATH 242/CS 371 Introduction to Computational Mathematics
- AMATH 251 Introduction to Differential Equations (Advanced Level)*
- AMATH 271 Introduction to Theoretical Mechanics
- AMATH 331/PMATH 331 Applied Real Analysis
- AMATH 332/PMATH 332 Applied Complex Analysis
- AMATH 351 Ordinary Differential Equations 2
- AMATH 353 Partial Differential Equations 1
- AMATH 361 Continuum Mechanics
- AMATH 373 Quantum Theory 1
- AMATH 473/PHYS 454 Quantum Theory 2
- AMATH 475/PHYS 476 Introduction to General Relativity
- PHYS 121 Mechanics
- PHYS 122 Waves, Electricity and Magnetism
- PHYS 234 Quantum Physics 1
- PHYS 242 Electricity and Magnetism 1

Two of

- PHYS 342 Electricity and Magnetism 2
- PHYS 358 Thermal Physics or ECE 403 Thermal Physics
- PHYS 359 Statistical Mechanics
- PHYS 363 Intermediate Classical Mechanics

3.5 units of AMATH/PHYS electives, at least 1.0 unit of which are at the 300- 400-level.

Specializations

Biology Specialization

Legend

*Courses used to satisfy this requirement cannot be used to satisfy the 300- and 400-level AMATH course requirements of the Honours Applied Mathematics plan.

This plan has the same course requirements as Honours Applied Mathematics, with the following constraints on course selection:

4.0 units, at least 2.0 units of which are at the 300- or 400-level, from the following list*:
AMATH 382/BIOL 382 Computational Modelling of Cellular Systems
AMATH 383 Introduction to Mathematical Biology
Any **BIOL** course

Some suggested courses are listed below:

- **BIOL 130** Introductory Cell Biology
- **BIOL 239** Genetics
- **BIOL 240** Fundamentals of Microbiology
- **BIOL 266** Introduction to Computational Biology
- **BIOL 280/PHYS 280** Introduction to Biophysics
- **BIOL 308** Principles of Molecular Biology
- **BIOL 359** Evolution 1: Mechanisms
- **BIOL 364** Mathematical Modelling in Biology
- **BIOL 365** Methods in Bioinformatics
- **BIOL 456** Population Biology
- **BIOL 458** Quantitative Ecology

Note
BIOL courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Economics Specialization
This plan has the same course requirements as Honours Applied Mathematics with the following constraints on course selection:

4.0 units, at least 2.0 units of which are at the 300- or 400-level, from the following list:

- **CO 250** Introduction to Optimization or **CO 255** Introduction to Optimization (Advanced Level)
- Any **ECON** course

Some suggested courses are listed below

- **ECON 101** Introduction to Microeconomics
- **ECON 102** Introduction to Macroeconomics
- **ECON 201** Microeconomic Theory for Business and Policy
- **ECON 206** Money and Banking 1
- **ECON 207** Economic Growth and Development 1
- **ECON 212** Introduction to Game Theory
- **ECON 290** Models of Choice in Competitive Markets
- **ECON 306** Mathematical Economics
- **ECON 311** Mathematical Economics
- **ECON 391** Equilibrium in Market Economies
- **ECON 392** Strategic Situations and Welfare Economics
- **ECON 393** Market Failures

Note
ECON courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Engineering Specialization: Fluids and Heat

Legend
*This course can be used to satisfy the 300- and 400-level AMATH course requirements of the Honours Applied Mathematics plan.

Enrolment in this plan is limited; a cumulative average of 70% or higher is strongly recommended.

This plan has the same requirements as Honours Applied Mathematics, with the following constraints on course selection:

All of

- **AMATH 271** Introduction to Theoretical Mechanics
- **AMATH 361** Continuum Mechanics*
- **AMATH 463** Fluid Mechanics*
- **PHYS 122** Waves, Electricity and Magnetism
One of

- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)
- STAT 331 Applied Linear Models
- STAT 340 Computer Simulation of Complex Systems

All of

- GENE 123 Electrical Circuits and Instrumentation
- ME 219 Mechanics of Deformable Solids 1
- ME 250 Thermodynamics 1
- ME 353 Heat Transfer 1
- ME 354 Thermodynamics 2
- ME 456 Heat Transfer 2

One of

- ME 557 Combustion 1
- ME 564 Aerodynamics
- ME 571 Air Pollution

Note
ME courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Engineering Specialization: Communication and Control

Legend
* This course can be used to satisfy the 300- and 400-level AMATH course requirements of the Honours Applied Mathematics plan.

Enrolment in this plan is limited; a cumulative average of 70% or higher is strongly recommended.

This plan has the same requirements as Honours Applied Mathematics, with the following constraints on course selection:

All of

- AMATH 455 Control Theory*
- PHYS 122 Waves, Electricity and Magnetism

One of

- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)
- CS 475 Computational Linear Algebra
- STAT 331 Applied Linear Models
- STAT 340 Computer Simulation of Complex Systems

All of

- ECE 207 Signals and Systems
- ECE 240 Electronic Circuits 1
- ECE 318 Analog and Digital Communications
- ECE 380 Analog Control Systems
- GENE 123 Electrical Circuits and Instrumentation

Two of

- ECE 413 Digital Signal Processing
- ECE 484 Digital Control Applications
- ECE 486 Robot Dynamics and Control
- SYDE 372 Introduction to Pattern Recognition
- SYDE 544 Biomedical Measurement and Signal Processing
Note
ECE and SYDE courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Engineering Specialization: Heat and Mass Transfer

Legend
*This course can be used to satisfy the 300- and 400-level AMATH course requirements of the [Honours Applied Mathematics](#) plan.

Enrolment in this plan is limited; a cumulative average of 70% or higher is strongly recommended. This plan has the same requirements as Honours Applied Mathematics, with the following constraints on course selection:

All of

- [AMATH 361](#) Continuum Mechanics*
- [AMATH 463](#) Fluid Mechanics*

All of

- [CHE 230](#) Physical Chemistry 1
- [CHE 231](#) Physical Chemistry 2
- [CHE 312](#) Mathematics of Heat and Mass Transfer
- [CHE 313](#) Applications of Heat and Mass Transfer
- [CHE 330](#) Chemical Engineering Thermodynamics

Two of

- [CHE 314](#) Chemical Reaction Engineering
- [CHE 331](#) Electrochemical Engineering
- [CHE 341](#) Introduction to Process Control
- [CHE 361](#) Bioprocess Engineering
- [CHE 522](#) Advanced Process Dynamics and Control

Note
CHE courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Physics Specialization

Legend
*Courses used to satisfy this requirement cannot be used to satisfy the 300- and 400-level AMATH requirements of the [Honours Applied Mathematics](#) plan.

PHYS 121 course is a requirement for the Honours Applied Mathematics plan and cannot be used to satisfy this requirement.

This plan has the same course requirements as Honours Applied Mathematics with the following additional constraints on course selection:

4.0 units, at least 2.0 units of which are at the 300- or 400-level, from the following list*:

- [AMATH 271](#) Introduction to Theoretical Mechanics
- [AMATH 361](#) Continuum Mechanics
- [AMATH 373](#) Quantum Theory 1
- [AMATH 463](#) Fluid Mechanics
- [AMATH 473/PHYS 454](#) Quantum Theory 2
- [AMATH 475/PHYS 476](#) Introduction to General Relativity
- [ECE 403](#) Thermal Physics or [PHYS 358](#) Thermal Physics

Any [PHYS](#) course**

Some suggested courses are listed below:

- [PHYS 122](#) Waves, Electricity and Magnetism
- [PHYS 124](#) Modern Physics
- [PHYS 175](#) Introduction to the Universe
PHYS 225 Modeling Life Physics
PHYS 234 Quantum Physics 1
PHYS 242 Electricity and Magnetism 1
PHYS 335 Condensed Matter Physics
PHYS 359 Statistical Mechanics

Note
PHYS courses can be used to fulfil the subject concentration requirement of the AMATH plan.

Applied Mathematics Minor

Legend
AMATH 250 can be substituted with consent of the department.

This minor is only open to students within the Faculty of Mathematics.

All of
MATH 237 Calculus 3 for Honours Mathematics or MATH 247 Calculus 3 (Advanced Level)
AMATH 231 Calculus 4
AMATH 251 Introduction to Differential Equations (Advanced Level)*
AMATH 351 Ordinary Differential Equations 2
AMATH 353 Partial Differential Equations 1

Three additional 300- or 400-level AMATH courses.

Combinatorics and Optimization

Overview
Combinatorics is the study of discrete structures and their properties. It includes coding theory, combinatorial design, enumeration theory, graph theory, and polyhedral theory. Many modern scientific advances have employed combinatorial structures to model the physical world, and recent advances in computational technology have made such investigations feasible. In particular, since computers process discrete data, combinatorics has become indispensable to computer science.

Optimization, or mathematical programming, is the study of maximizing and minimizing functions subject to specified boundary conditions or constraints. The functions to be optimized arise in engineering, the physical and management sciences, and in various branches of mathematics. With the emergence of computers, optimization experienced a dramatic growth as a mathematical theory, enhancing both combinatorics and classical analysis. In its applications to engineering and management sciences, optimization forms an important part of the discipline of operations research.

Both combinatorics and optimization have long been special interests of Canadian mathematicians. Indeed, Waterloo was the first university in the world to have a Department of Combinatorics and Optimization, and it continues to be a leading centre for teaching and research in the theories and applications of these disciplines.

Degree Requirements

Combinatorics and Optimization
Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of
MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of
CO 250 Introduction to Optimization
CO 255 Introduction to Optimization (Advanced Level)

One of
CO 330 Combinatorial Enumeration
CO 342 Introduction to Graph Theory
One of

- CO 351 Network Flow Theory
- CO 353 Computational Discrete Optimization
- CO 367 Nonlinear Optimization

(If CO 255 is taken, this requirement can be satisfied by taking one of CO 450 to CO 471.)

Three additional courses chosen from

- CO 330 Combinatorial Enumeration
- CO 331 Coding Theory
- CO 342 Introduction to Graph Theory
- CO 351 Network Flow Theory
- CO 353 Computational Discrete Optimization
- CO 367 Nonlinear Optimization
- CO 430 to CO 487, excluding CO 480

All of

- PMATH 336 Introduction to Group Theory with Applications or PMATH 347 Groups and Rings

Three of

- MATH 237 Calculus 3 for Honours Mathematics or MATH 247 Calculus 3 (Advanced Level)
- AMATH 331/PMATH 331 Applied Real Analysis
- AMATH 332/PMATH 332 Applied Complex Analysis
- CS 462 Formal Languages and Parsing
- CS 466 Algorithm Design and Analysis
- CS 487 Introduction to Symbolic Computation
- PMATH 334 Introduction to Rings and Fields with Applications or PMATH 348 Fields and Galois Theory
- PMATH 340 Elementary Number Theory

Note: These fourth-year CS courses are open only to CS majors.

Two additional 300- or 400-level math courses with a course prefix other than CO.

One additional 300- or 400-level math course.

Three additional math courses.

Joint Combinatorics and Optimization

See [Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations](https://www.uwaterloo.ca/undergraduate-studies-calendar/university-of-waterloo) for a description of joint plan requirements. Note that both majors designated in such joint plans must be disciplines within the Faculty of Mathematics.

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

One of

- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)

Four additional courses chosen from

- CO 330 Combinatorial Enumeration
- CO 331 Coding Theory
- CO 342 Introduction to Graph Theory
- CO 351 Network Flow Theory
- CO 353 Computational Discrete Optimization
- CO 367 Nonlinear Optimization
- CO 430 to CO 487, excluding CO 480
All of

PMATH 336 Introduction to Group Theory with Applications or PMATH 347 Groups and Rings

Three of

AMATH 331/PMATH 332 Applied Real Analysis
AMATH 332/PMATH 332 Applied Complex Analysis
CS 341 Algorithms
CS 360 Introduction to the Theory of Computing
CS 466 Algorithm Design and Analysis
MATH 237 Calculus 3 for Honours Mathematics or MATH 247 Calculus 3 (Advanced Level)
PMATH 334 Introduction to Rings and Fields with Applications or PMATH 348 Fields and Galois Theory
PMATH 340 Elementary Number Theory

Note: CS 466 is open only to CS joint majors.

Combinatorics and Optimization Minor

One of

MATH 103 Introductory Algebra for Arts and Social Science
MATH 106 Applied Linear Algebra 1
MATH 114 Linear Algebra for Science
MATH 115 Linear Algebra for Engineering
MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 for Honours Mathematics (Advanced Level)

One of

ECE 103 Discrete Mathematics
MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)
PMATH 340 Elementary Number Theory

One of

MATH 104 Introductory Calculus for Arts and Social Science
MATH 116 Calculus 1 for Engineering
MATH 117 Calculus 1 for Engineering
MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 for Honours Mathematics (Advanced Level)

All of

CO 250 Introduction to Optimization or CO 255 Introduction to Optimization (Advanced Level)
MATH 239 Introduction to Combinatorics or MATH 249 Introduction to Combinatorics (Advanced Level)

Three of

CO 330 Combinatorial Enumeration
CO 331 Coding Theory
CO 342 Introduction to Graph Theory
CO 351 Network Flow Theory
CO 353 Computational Discrete Optimization
CO 367 Nonlinear Optimization
CO 370 Deterministic OR Models
CO 372 Portfolio Optimization Models
CO 430 to CO 487, excluding CO 480

Notes
1. The Combinatorics and Optimization Minor designation is not available to students outside the Faculty pursuing a Joint Honours academic plan with Mathematics or a Mathematics Minor.
2. Other Linear Algebra and Calculus courses than those listed above may be used to satisfy the "One of" requirements above, with approval of the Combinatorics and Optimization advisor.

Computational Mathematics

Overview
Mathematical models arise in a wide variety of fields: business, economics, engineering, finance, medicine, science, and many others. The application of computer methods to simulate such models was traditionally called "scientific computation," though the practice has spread far beyond its roots in science to encompass problems arising in all areas of society. The results of such simulations are numerical answers, formulae, data sets, plots, charts, and images that help us to understand the nature of the world around us, and allow us to predict and influence the future. Developing and analyzing such models involves a blend of mathematics and computer science. It includes issues such as the implications of finite precision arithmetic, the efficiency, accuracy, and stability of numerical computations, the development and maintenance of mathematical software, and the effects of modern developments in computer architectures and networks. Graduates of Computational Mathematics will be able to deploy effectively a wide range of mathematical and computational techniques in areas of application.

Degree Requirements

Computational Mathematics

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

All of

- AMATH 242/CS 371 Introduction to Computational Mathematics

One of

- CS 230 Introduction to Computers and Computer Systems
- CS 241 Foundations of Sequential Programs

One of

- CS 234 Data Types and Structures
- CS 240 Data Structures and Data Management

Notes:
- CS 240 requires CS 245 and CS 246 as prerequisites, CS 241 requires CS 246 as a prerequisite.
- CS 240 and CS 241 have restricted access for non-CS majors.

Four of the following "core" courses

- AMATH 342 Computational Methods for Differential Equations
- CO 250 Introduction to Optimization or CO 255 Introduction to Optimization (Advanced Level)
- CS 245 Logic and Computation or PMATH 330 Introduction to Mathematical Logic
- CS 246 Object-Oriented Software Development
- CS 475 Computational Linear Algebra
- STAT 340 Computer Simulation of Complex Systems or STAT 341 Computational Statistics and Data Analysis

Note: CS 245 and CS 246 require CS 136 as a prerequisite.
Four additional courses from

AMATH 382/BIOL 382 Computational Modelling of Cellular Systems
AMATH 442 Computational Methods for Partial Differential Equations
CO 351 Network Flow Theory
CO 353 Computational Discrete Optimization
CO 367 Nonlinear Optimization
CO 370 Deterministic OR Models
CO 372 Portfolio Optimization Models
CO 450 Combinatorial Optimization
CO 452 Integer Programming
CO 454 Scheduling
CO 456 Introduction to Game Theory
CO 485 The Mathematics of Public-Key Cryptography
CO 487 Applied Cryptography
CS 341 Algorithms
CS 451 Data-Intensive Distributed Computing
CS 456 Algorithm Design and Analysis
CS 476 Numerical Computation for Financial Modeling
CS 480 Introduction to Machine Learning
CS 482 Computational Techniques in Biological Sequence Analysis
CS 485 Statistical and Computational Foundations of Machine Learning
CS 487 Introduction to Symbolic Computation
PMATH 370 Chaos and Fractals
STAT 440 Computational Inference
STAT 441 Statistical Learning - Classification
STAT 442 Data Visualization
STAT 444 Statistical Learning - Function Estimation

Note: CS 341, CS 451, CS 466, CS 480, and CS 485 have restricted access for non-CS majors.

Three (1.5 units) non-math courses from one of the following departments:

Economics
any one Science department
any one Engineering department

Note: Engineering courses may not be open to Mathematics students or may not easily fit schedules.
At least one of these three courses must be at the 200-, 300-, or 400-level. Other course concentrations may be eligible subject to approval by a Computational Mathematics advisor.

Computational Mathematics Minor
This minor is only available to students within the Faculty of Mathematics.

One of

AMATH 242/CS 371 Introduction to Computational Mathematics
CS 370 Numerical Computation

Three of

AMATH 342 Computational Methods for Differential Equations
CO 250 Introduction to Optimization
CS 245 Logic and Computation or PMATH 330 Introduction to Mathematical Logic
CS 246 Object-Oriented Software Development
CS 475 Computational Linear Algebra
STAT 340 Computer Simulation of Complex Systems or STAT 341 Computational Statistics and Data Analysis

Three additional courses from

AMATH 382/BIOL 382 Computational Modelling of Cellular Systems
AMATH 442 Computational Methods for Partial Differential Equations
CO 351 Network Flow Theory
CO 353 Computational Discrete Optimization
CO 367 Nonlinear Optimization
CO 370 Deterministic OR Models
CO 372 Portfolio Optimization Models
CO 450 Combinatorial Optimization
CO 452 Integer Programming
CO 454 Scheduling
CO 456 Introduction to Game Theory
CO 485 The Mathematics of Public-Key Cryptography
CO 487 Applied Cryptography
CS 341 Algorithms
CS 451 Data-Intensive Distributed Computing
CS 466 Algorithm Design and Analysis
CS 476 Numerical Computation for Financial Modeling
CS 480 Introduction to Machine Learning
CS 482 Computational Techniques in Biological Sequence Analysis
CS 485 Statistical and Computational Foundations of Machine Learning
CS 487 Introduction to Symbolic Computation
PMATH 370 Chaos and Fractals
STAT 440 Computational Inference
STAT 441 Statistical Learning - Classification
STAT 442 Data Visualization
STAT 444 Statistical Learning - Function Estimation

Note: CS 341, CS 451, CS 466, CS 480, and CS 485 have restricted access for non-CS majors.

At most three of these seven courses may also be used to satisfy an explicit choice list course requirement of the student’s major. For CS majors, at most three of the seven can have (or be cross-listed with courses having) a CS label.

Computer Science

Overview
Computer scientists study the nature and properties of information, its structure and classification, its storage and retrieval, and the various types of processing to which it can be subjected.

The David R. Cheriton School of Computer Science is the largest centre of research and teaching in computer science in Canada. Our students and faculty work across the breadth of the field in areas such as algorithms and complexity; artificial intelligence; bioinformatics; computer algebra and symbolic computation; computer graphics; cryptography, security and privacy; database systems; formal methods; health informatics; human computer interaction; information retrieval; machine learning; programming languages; quantum computing; scientific computation; software engineering; and systems and networking.

The following regular and co-operative plans are accredited by the Computer Science Accreditation Council, which is sponsored by the Canadian Information Processing Society.

- Bachelor of Mathematics (BMath) Honours Computer Science
- Bachelor of Mathematics (BMath) Honours Computer Science/Business Specialization
- Bachelor of Mathematics (BMath) Honours Computer Science/Digital Hardware Specialization
- Honours Bachelor of Computer Science
- Honours Bachelor of Computer Science/Business Specialization
- Honours Bachelor of Computer Science/Digital Hardware Specialization
- Honours Bachelor of Computer Science/Software Engineering Specialization
- Any double Honours plan involving an accredited Computer Science plan
- Any accredited Computer Science plan with a minor

Plans involving the Software Engineering Option are also accredited under the Software Engineering criteria.

This accreditation recognizes that the quality of these plans meets published, generally accepted criteria for sound education in the discipline. A student who graduates from an accredited plan is eligible to be designated as an Information Systems Professional after two years of professional level experience.

Accreditation for Joint Honours Computer Science has not been sought.
Admissions
Admission to Computer Science major plans will normally occur when a student first applies to the Faculty of Mathematics.

Students from within the Faculty of Mathematics with advanced standing may apply for admission to a Computer Science major plan if they:

- have completed at least one term in the Faculty of Mathematics with a typical course load for a Computer Science major. For students taking a first-year CS course, a typical load includes one CS course, two math courses, and two non-math electives. For students taking second-year CS courses, a typical load includes two CS courses, two math courses, and one non-math elective.
- have credit for CS 136 or CS 146
- have a math major average of at least 65% (calculated over all math and computer science courses) and a CS major average of at least 70%

Computer Science major plans are limited-enrolment plans and successful completion of the above conditions will not guarantee admission; applicants without some of these conditions will be considered on an individual basis. Students are normally not considered for admission beyond the 2B level.

Plan Requirements

Bachelor of Computer Science
Students in this plan must fulfil all the requirements in Table I and the following:

One of

- CS 115 Introduction to Computer Science 1
- CS 135 Designing Functional Programs
- CS 145 Designing Functional Programs (Advanced Level)

One of

- CS 136 Elementary Algorithm Design and Data Abstraction
- CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

- MATH 127 Calculus 1 for the Sciences
- MATH 137 Calculus 1 for Honours Mathematics
- MATH 147 Calculus 1 (Advanced Level)

One of

- MATH 128 Calculus 2 for the Sciences
- MATH 138 Calculus 2 for Honours Mathematics
- MATH 148 Calculus 2 (Advanced Level)

One of

- MATH 135 Algebra for Honours Mathematics
- MATH 145 Algebra (Advanced Level)

One of

- MATH 136 Linear Algebra 1 for Honours Mathematics
- MATH 146 Linear Algebra 1 (Advanced Level)

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

One of

- STAT 230 Probability
- STAT 240 Probability (Advanced Level)
One of

- STAT 231 Statistics
- STAT 241 Statistics (Advanced Level)

All of

- CS 240 Data Structures and Data Management
- CS 241 Foundations of Sequential Programs
- CS 245 Logic and Computation
- CS 246 Object-Oriented Software Development
- CS 251 Computer Organization and Design
- CS 341 Algorithms
- CS 350 Operating Systems

Three additional CS courses chosen from CS 340-CS 398, CS 440-CS 489.

Two additional CS courses chosen from CS 440-CS 489.

One additional course chosen from

- CO 487 Applied Cryptography
- CS 440 - CS 498
- CS 499T Honours Thesis
- STAT 440 Computational Inference

CS 600- or 700-level courses

(CS 600- or 700-level courses may be taken only if an equivalent 400-level course does not exist and special permission is obtained from the instructor and a CS undergraduate advisor. Courses in this list may be counted as CS 0.5 unit.)

The 5.0 non-math units must satisfy the following elective breadth and depth requirements. (Alternate course selections must be approved by a CS advisor.)

Elective breadth requirements

- 1.0 units from the humanities (subjects from CHINA, CLAS, CMW, CROAT, DAC, DUTCH, EASIA, ENGL, FINE, FR, GER, GRK, HIST, HUMSC, ITAL, ITALST, JAPAN, JS, KOREA, LAT, MEDVL, MUSIC, PHIL, PORT, REES, RS, RUSS, SI, SPAN, SPCOM, THER, VCULT)
- 1.0 units from the social sciences (subjects from AFM, ANTH, APPLS, ARBUS, BET, BUS, COMM, ECON, ENBUS, GEOG, GSJ, HRM, INDEV, INDT, INTST, INTTS, LS, MSCI, PACS, PSCI, PSYCH, REC, SDS, SMF, SOC, SOCW, STV)
- 0.5 unit from the pure sciences (subjects from BIOL, CHEM, EARTH, PHYS, SCI)
- 0.5 unit from the pure and applied sciences (subjects from pure sciences plus AHS, ENVS, ERS, KIN, MNS, PLAN)

Elective depth requirements

- 1.5 units with the same subject, including at least 0.5 unit at third-year level or higher
- or
- 1.5 units with the same subject forming a prerequisite chain of length three

Notes

1. No course can satisfy more than one of the breadth requirements.
2. Courses with substantial math or computer science content, regardless of subject, do not satisfy the elective breadth or depth requirement. Students may wish to consult with the CS advisors about specific courses.
3. Courses from the "First Course" list for the Math Faculty Communication Skills Requirement do not satisfy the humanities breadth requirement. Courses only found in the "Second Course" list can satisfy both the humanities breadth requirement and the Communication Skills Requirement.

Bachelor of Computer Science (Data Science)

Legend
Students who take STAT 440 cannot also count this course toward the “One additional course chosen from” requirement for the Bachelor of Computer Science.

Data Science is the study of methods to obtain insight from available data in order to understand, predict, and improve business strategy, products and services, marketing campaigns, medicine, public health and safety, and many other pursuits. Such methods involve elements of both Statistics and Computer Science, with a focus on three foundational components: (i) database management, (ii) statistics and machine learning, and (iii) distributed and parallel systems.

The Data Science plan is guided by a joint curriculum committee. This committee is chaired by a director of data science, normally a faculty member chosen from either academic unit with the agreement of both. Along with the director, the committee includes four Faculty representatives, two appointed by each unit. In addition, the associate chair of undergraduate studies for Statistics and Actuarial Science and the director of undergraduate studies for Computer Science serve ex officio on the committee. Curriculum changes introduced by the committee must receive approval from both units before being approved at the Faculty level. In addition to chairing the curriculum committee, the director has responsibility for promoting the plan, both internally and externally, and for overall coordination.

The Faculty of Mathematics offers two Honours plans in Data Science, a Bachelor of Mathematics (BMath - Data Science) and a Bachelor of Computer Science (BCS - Data Science). The Data Science plans are offered jointly by the Department of Statistics and Actuarial Science and by the David R. Cheriton School of Computer Science. Students in the two plans graduate with a background in both computer science and statistics, taking a combination of required and elective courses that together provide a solid foundation in this emerging area.

Students in this plan must satisfy all requirements for the BCS and must satisfy the following additional constraints on course selection:

One of

- **MATH 235** Linear Algebra 2 for Honours Mathematics
- **MATH 245** Linear Algebra 2 (Advanced Level)

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

All of

- **CS 348** Introduction to Database Management
- **CS 451** Data-Intensive Distributed Computing
- **STAT 330** Mathematical Statistics
- **STAT 331** Applied Linear Models
- **STAT 341** Computational Statistics and Data Analysis

One of

- **CS 480** Introduction to Machine Learning
- **CS 485** Statistical and Computational Foundations of Machine Learning
- **CS 486** Introduction to Artificial Intelligence

One additional course from the following list

- **CS 448** Database System Implementation
- **CS 454** Distributed Systems
- **CS 480** Introduction to Machine Learning
- **CS 485** Statistical and Computational Foundations of Machine Learning
- **CS 486** Introduction to Artificial Intelligence

Two of

- **STAT 431** Generalized Linear Models and their Applications
- **STAT 440** Computational Inference*
Bachelor of Mathematics (Computer Science)

Students in this plan must fulfill all the requirements in Table I and Table II. This must include at least 27 math courses and the following specific requirements:

One of

- STAT 441 Statistical Learning - Classification
- STAT 442 Data Visualization
- STAT 443 Forecasting
- STAT 444 Statistical Learning - Function Estimation

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

All of

- CS 240 Data Structures and Data Management
- CS 241 Foundations of Sequential Programs
- CS 245 Logic and Computation
- CS 246 Object-Oriented Software Development
- CS 251 Computer Organization and Design
- CS 341 Algorithms
- CS 350 Operating Systems

One of

- AMATH 242/CS 371 Introduction to Computational Mathematics
- CS 370 Numerical Computation

One of

- CS 360 Introduction to the Theory of Computing
- CS 365 Models of Computation

One additional CS course chosen from CS 340-CS 398, CS 440-CS 489.

Two additional CS courses chosen from CS 440-CS 489.

One additional course chosen from

- CO 487 Applied Cryptography
- CS 440-CS 498
- CS 499T Honours Thesis
- STAT 440 Computational Inference

(CS 600- or 700-level courses may be taken only if an equivalent 400-level course does not exist and special permission is obtained from the instructor and a CS undergraduate advisor. Courses in this list may be counted as CS 0.5 units.)

Three additional courses labelled ACTSC, AMATH, CO, PMATH, STAT, excluding the following:

- Courses with requisites normally excluding Honours CS students
- Courses cross-listed with a CS course
- Courses explicitly listed in CS major plans as alternatives to CS courses
- Readings and Topics courses
- ACTSC 221, CO 353, CS 380, CS 480

The 5.0 non-math units must satisfy the same restrictions as specified for the Bachelor of Computer Science.

Business Administration & Computer Science Double Degree
Overview

Students can earn both a computer science and business degree in five years by enrolling in this double degree program. Students receive an Honours Bachelor of Computer Science (BCS) from the University of Waterloo and an Honours Bachelor of Business Administration (BBA) from Wilfrid Laurier University and are invited to both universities' convocation ceremonies for graduation.

- At the David R. Cheriton School of Computer Science, students gain an understanding of software, algorithms, programming, and their mathematical foundations.
- At the School of Business and Economics, students develop an understanding of a variety of areas of business, such as brand communication, accounting, human resource management, marketing, and finance. Students can specialize in these and other areas to focus their studies.

Enrolment in this double degree program is restricted and students are normally admitted for the fall term of their first year.

Students may apply to Waterloo, Laurier, or both. Students select their "home school" by accepting an admissions offer from one of the two universities. The home school provides most student support services, such as co-op, scholarships, and housing. The choice of home school also identifies the university from which students receive the co-op designation on their degree. Students usually cannot change their home school without leaving the double degree program.

The double degree program cannot be combined with any other major, minor, or option except as described in the notes below. The program requires the following:

- Nine or more full-time academic study terms.
- Successful completion of a minimum of 52 one-term courses (26 units). Students take 24 specified courses (12 units) at Waterloo and 24 specified courses (12 units) at Laurier, and four elective courses (two units), which may be taken at either university.
- Students whose home school is Waterloo: Completion of four or five co-op work terms intermixed with study terms. The first work term occurs during the spring term of Year One. The co-op sequence for these students is listed in the Study/Work Sequence section of this Calendar. Students in this program will be required to pay six co-op fees, which are usually assessed in the first three years of study.
- Students whose home school is Laurier: Completion of three or four co-op work terms intermixed with study terms. The first work term occurs during the winter term of Year Two. After this term, Laurier and Waterloo students have co-op terms at the same time.

Students can only change their co-op term sequences in their first three years if they have especially mitigating circumstances, and with the approval of both universities. This type of change may delay graduation.

All double degree students must follow the policies, procedures, regulations, and requirements of both Waterloo and Laurier in regards to course selection, academic performance, and academic conduct. Students who fail to do so are normally required to withdraw from the double degree program. These students may be able to enrol in a (single degree) plan at Waterloo (Bachelor of Mathematics (BMath) or BCS) or Laurier (BBA) depending upon their individual circumstances. Such students may not be eligible to continue in co-op in their new plan.

Degree Requirements

Students in this plan must fulfil all the requirements in Table I and the following:

From the University of Waterloo (Waterloo)

One of

- CS 115 Introduction to Computer Science 1
- CS 135 Designing Functional Programs
- CS 145 Designing Functional Programs (Advanced Level)

One of
CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 (Advanced Level)

One of

MATH 128 Calculus 2 for the Sciences
MATH 138 Calculus 2 for Honours Mathematics
MATH 148 Calculus 2 (Advanced Level)

One of

MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)

One of

MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)

One of

MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of

STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of

STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

All of

CO 250 Introduction to Optimization
CS 240 Data Structures and Data Management
CS 241 Foundations of Sequential Programs
CS 245 Logic and Computation
CS 246 Object-Oriented Software Development
CS 251 Computer Organization and Design
CS 341 Algorithms
CS 350 Operating Systems
CS 490 Information Systems Management
CS 492 The Social Implications of Computing

Four additional CS courses chosen from CS 340-CS 398, CS 440-CS 489, with at least two chosen from CS 440-CS 489.

From Wilfrid Laurier University (Laurier)
All of

BUS 111W Understanding the Business Environment
BUS 121W Functional Areas of the Organization
BUS 127W Introduction to Financial Accounting
BUS 231W Business Law
BUS 247W Managerial Accounting
BUS 283W Financial Management I
BUS 288W Organizational Behaviour I
BUS 352W Introduction to Marketing Management
BUS 354W Human Resources Management
BUS 362W Building and Managing Products, Services and Brands
BUS 375W Operations Management
BUS 393W Financial Management II
BUS 398W Organizational Behaviour II
BUS 481W Business Policy I
BUS 491W Business Policy II
ECON 120W Introduction to Microeconomics
ECON 140W Introduction to Macroeconomics

One of
ECON 250W Intermediate Macroeconomic Analysis for Management
ECON 260W Intermediate Microeconomic Analysis for Management

Six additional 300- or 400-level BUS or ENTR elective courses (3.0 units) taken in third, fourth, or fifth year.

From Waterloo or Laurier
Four additional elective courses (2.0 units) are required. Students are free to choose their elective courses from either university.

Notes

1. For details about the various Laurier Honours Bachelor of Business Administration (BBA) policies, procedures, regulations, and requirements that apply to this double degree plan, please consult the Laurier Calendar and/or one of the plan's academic advisors at Laurier.
2. W courses are offered by Laurier. See the Laurier Calendar for course details.
3. Students may be allowed to have additional designations (e.g., minors or options) on their Waterloo diploma and transcript. Such designations must be approved by the academic unit offering the minor or option and the double degree advisors from both Waterloo and Laurier. The designations must not be similar to any designations on the student's Laurier academic record and must be in disciplines offered outside of the School of Business & Economics at Laurier.

Note: The alternate degree must be approved by the double degree advisors from both Waterloo and Laurier.

Joint Computer Science (Bachelor of Mathematics)
See [Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations](#) for a description of joint plan requirements. Note that both majors designated in joint plans must be disciplines within the Faculty of Mathematics. The joint requirements for Joint Computer Science (Bachelor of Mathematics) are identical to those for the [Joint Bachelor of Computer Science](#).

Joint Bachelor of Computer Science
Students in this plan must satisfy all the requirements of [Table I](#), and the requirements below.

One of
- CS 115 Introduction to Computer Science 1
- CS 135 Designing Functional Programs
- CS 145 Designing Functional Programs (Advanced Level)

One of
- CS 136 Elementary Algorithm Design and Data Abstraction
- CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of
- MATH 127 Calculus 1 for the Sciences
- MATH 137 Calculus 1 for Honours Mathematics
- MATH 147 Calculus 1 (Advanced Level)
One of
 MATH 128 Calculus 2 for the Sciences
 MATH 138 Calculus 2 for Honours Mathematics
 MATH 148 Calculus 2 (Advanced Level)

One of
 MATH 135 Algebra for Honours Mathematics
 MATH 145 Algebra (Advanced Level)

One of
 MATH 136 Linear Algebra 1 for Honours Mathematics
 MATH 146 Linear Algebra 1 (Advanced Level)

One of
 MATH 239 Introduction to Combinatorics
 MATH 249 Introduction to Combinatorics (Advanced Level)

One of
 STAT 230 Probability
 STAT 240 Probability (Advanced Level)

One of
 STAT 231 Statistics
 STAT 241 Statistics (Advanced Level)

All of
 CS 240 Data Structures and Data Management
 CS 241 Foundations of Sequential Programs
 CS 245 Logic and Computation
 CS 246 Object-Oriented Software Development
 CS 251 Computer Organization and Design
 CS 341 Algorithms
 CS 350 Operating Systems

One additional course chosen from CS 340-CS 398, CS 440-CS 489.
Two additional courses chosen from CS 440-CS 489, CS 499T.
Ten non-math courses satisfying the same restrictions as specified for the Bachelor of Computer Science.

Options

Computing Option
A Computing option is available to all students, except those enrolled in Software Engineering, Computing and Financial Management, and other plans involving Computer Science. Certain plans already including substantial computer science content may also be excluded. See the Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations page for more details about excluded plans.

One of
 CS 115 Introduction to Computer Science 1
 CS 135 Designing Functional Programs
 CS 145 Designing Functional Programs (Advanced Level)

One of
 CS 116 Introduction to Computer Science 2
 CS 136 Elementary Algorithm Design and Data Abstraction
 CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)
One additional CS course from CS 100-CS 146, CS 200-CS 299, CS 300-CS 398, CS 400-CS 498.

Four additional courses from CS 200-CS 299, CS 300-CS 398, CS 400-CS 498, COMM 432.

One additional course from CS 300-CS 398, CS 400-CS 498.

The average of all CS courses on the student’s record (including repeated courses) must be at least 60%.

Notes

1. Most courses in the range CS 240-CS 299, CS 340-CS 398, CS 440-CS 498 are only available to CS majors, so upper-year CS courses taken toward this option will usually be in the range CS 200-CS 239, CS 300-CS 339, CS 400-CS 439.

2. A common route into upper-year CS courses is to take all of CS 115, CS 116, and CS 136. All three of these courses may count toward this option.

3. Students cannot obtain both the Computer Science (CS) Minor and the Computing Option.

Specializations

Artificial Intelligence Specialization

The extent to which Artificial Intelligence (AI) is now ingrained in science/technology development and increasingly central to everyday life is captured in the report and mission of the international One Hundred Year Study on Artificial Intelligence (September 2016). AI advances strive to achieve, to ever-greater degrees of efficacy, reliability and safety, the ways in which machines and systems perceive, see, speak, decide, respond, act, and plan. AI questions engage investigators across a range of disciplines including computer, statistical and actuarial sciences; electrical/computer, mechatronics and systems design; combinatorics and optimization; cognitive science; psychology; biology; applied health science; economics; political science; and law; among others.

The AI Specialization is available for both the Bachelor of Computer Science (BCS) and the Bachelor of Mathematics (BMath) Computer Science plans. Students in BCS Data Science are not eligible for this specialization. The requirements are the same as for the BCS and BMath Computer Science (CS) plans with the following constraints on upper-year CS courses:

All of

- CS 486 Introduction to Artificial Intelligence
- CS 492 The Social Implications of Computing

One of

- CS 480 Introduction to Machine Learning
- CS 485 Statistical and Computational Foundations of Machine Learning

One of

- ECE 380 Analog Control Systems
- SE 380 Introduction to Feedback Control

Three additional courses from

- CO 367 Nonlinear Optimization
- CO 456 Introduction to Game Theory
- CO 463 Convex Optimization and Analysis
- CO 466 Continuous Optimization
- CS 452 Real-time Programming
- CS 480 Introduction to Machine Learning
- CS 484 Computational Vision
- CS 485 Statistical and Computational Foundations of Machine Learning
- STAT 341 Computational Statistics and Data Analysis
- STAT 440 Computational Inference
- STAT 441 Statistical Learning - Classification
- STAT 444 Statistical Learning - Function Estimation
- ECE 423 Embedded Computer Systems
ECE 481 Digital Control Systems
ECE 486 Robot Dynamics and Control
ECE 488 Multivariable Control Systems
MSCI 446 Data Warehousing and Mining
MTE 544 Autonomous Mobile Robots
SYDE 372 Introduction to Pattern Recognition
SYDE 522 Machine Intelligence
SYDE 556 Simulating Neurobiological Systems

Note: At least one of the “Three additional courses” must be from Math and at least one from Engineering.

Special topics courses (e.g., CS 489) may sometimes be appropriate for this specialization; interested students should see the specialization co-ordinator for confirmation.

Bioinformatics Specialization
The Bioinformatics Specialization is available for both the Bachelor of Computer Science (BCS) and the Bachelor of Mathematics (BMath) (Computer Science) plans. The requirements are the same as for the BCS and BMath (CS) plans except that

1. elective breadth and depth requirements are waived, and
2. both plans include the following additional constraints on course selection.

All of

- BIOL 130 Introductory Cell Biology
- BIOL 130L Cell Biology Laboratory
- BIOL 239 Genetics
- BIOL 240 Fundamentals of Microbiology
- BIOL 240L Microbiology Laboratory
- BIOL 309 Analytical Methods in Molecular Biology
- BIOL 365 Methods in Bioinformatics
- BIOL 465 Structural Bioinformatics
- CHEM 120 Physical and Chemical Properties of Matter
- CHEM 120L Chemical Reaction Laboratory 1
- CHEM 123 Chemical Reactions, Equilibria and Kinetics
- CHEM 123L Chemical Reaction Laboratory 2
- CS 482 Computational Techniques in Biological Sequence Analysis

Business Specialization
The Business Specialization is available for both the Bachelor of Computer Science (BCS) and the Bachelor of Mathematics (BMath) (Computer Science) plans. The requirements are the same as for the BCS and BMath (CS) plans except that both plans include the following additional constraints on course selection.

Two of

- CS 348 Introduction to Database Management
- CS 454 Distributed Systems
- CS 490 Information Systems Management

Six of (business courses)

- ACTSC 231 Introductory Financial Mathematics
- ACTSC 371 Introduction to Investments
- ACTSC 372 Corporate Finance
- AFM 101 Introduction to Financial Accounting or AFM 123/ARBUS 102 Accounting Information for Managers
- AFM 102 Introduction to Managerial Accounting
- AFM 131/ARBUS 101 Introduction to Business in North America or BUS 111W Understanding the Business Environment
- ARBUS 302/MGMT 244 Principles of Marketing
- BUS 121W Functional Areas of the Organization
- BUS 362W Building and Managing Products, Services and Brands
- BUS 481W Business Policy I
BUS 491W Business Policy II
COMM 400 Entrepreneurship, Technology and the Emerging Information Economy
ECON 101 Introduction to Microeconomics
ECON 102 Introduction to Macroeconomics
HRM 200 Basic Human Resources Management
MGMT 220 Entrepreneurship and the Creative Workplace
MSCI 211 Organizational Behaviour or PSYCH 238 Organizational Psychology
MSCI 311 Organizational Design and Technology
MSCI 452 Decision Making Under Uncertainty

Note
Courses labelled BUS are offered by the Lazaridis School of Business and Economics at Laurier and are designated as BU in the Laurier Calendar. Non-math courses may have enrolment limits or may not easily fit schedules.

Computational Fine Art Specialization
This Specialization is available for the Bachelor of Computer Science (BCS) and Bachelor of Mathematics (BMath) (Computer Science) plans. The Computational Fine Art Specialization gives Computer Science students an opportunity to develop creativity and critical thinking, ultimately applying their computer science skills to create works of art. These works might, for example, explore new ways to visualize high dimensional data, develop non-photorealistic rendering, or simply create new computer-mediated experiences. The Specialization provides a basic foundation in art studio practice, art history, and art theory to prepare students for focused studio courses combining computers and art. The Specialization culminates in a specially designed studio course (CS 383/FINE 383) taken together with Fine Arts students who have a foundation in computer programming. The course requirements are the same as for the BCS or BMath (Computer Science) with the following additional requirements:

All of

CS 349 User Interfaces
CS 383/FINE 383 Computational Digital Art Studio
CS 488 Introduction to Computer Graphics
FINE 100 Studio Fundamentals
FINE 101/VCULT 101 Art History and Visual Culture
FINE 229 Hybrid Digital Media
FINE 257 Video, New Media & the Digital Turn

Digital Hardware Specialization
Students must apply for entry during 1A and have a cumulative average of 75% or higher. Enrolment in this plan is limited. Graduates of this Specialization do not qualify for the professional engineering designation.

The Digital Hardware Specialization is available for both the Bachelor of Computer Science and the Bachelor of Mathematics (Computer Science). In each case, the requirements are the same except that ECE 222 replaces CS 251 and the following additional constraints apply to course selection:

Two of

CS 452 Real-Time Programming
CS 454 Distributed Systems
CS 456 Computer Networks
CS 457 System Performance Evaluation

One of

ECE 224 Embedded Microprocessor Systems
MTE 325 Microprocessor Systems and Interfacing for Mechatronics Engineering

One of

ECE 429 Computer Architecture
CS 450 Computer Architecture

Note: Students taking ECE 429 instead of CS 450 will count this as a 0.5 math unit in the range CS 440-CS 498, and not a 0.5 non-math unit.
One of

- **GENE 123** Electrical Circuits and Instrumentation
- **MTE 120** Circuits

All of

- **ECE 124** Digital Circuits and Systems
- **ECE 327** Digital Hardware Systems
- **ECE 423** Embedded Computer Systems

Recommended courses

- **ECE 455** Embedded Software
- **PHYS 121** Mechanics

Human-Computer Interaction Specialization

Human-Computer Interaction (HCI) is concerned with the study of how people interact with computers and computational systems, as well as, the design and implementation of such systems. The HCI Specialization is available for the Bachelor of Computer Science (BCS) and Bachelor of Mathematics (Computer Science (BMath) plans. The course requirements are the same as for the BCS or BMath with the following additional requirements:

All of

- **CS 349** User Interfaces
- **CS 449** Human-Computer Interaction
- **CS 492** The Social Implications of Computing

Two of

- **CS 445/ECE 451** Software Requirements Specification and Analysis
- **CS 446/ECE 452** Software Design and Architectures
- **CS 447/ECE 453** Software Testing, Quality Assurance and Maintenance
- **CS 454** Distributed Systems
- **CS 458** Computer Security and Privacy
- **CS 484** Computational Vision
- **CS 485** Statistical and Computational Foundations of Machine Learning
- **CS 488** Introduction to Computer Graphics

Two of

- **ENGL 108D** Digital Lives
- **ENGL 293** Introduction to Digital Media Studies
- **ENGL 295** Social Media
- **FINE 150** Appreciation and Expression
- **FINE 257** Video, New Media & the Digital Turn
- **INTEG 251** Creative Thinking
- **KIN 320** Task Analysis
- **PSYCH 207** Cognitive Processes
- **PSYCH 261** Physiological Psychology
- **STAT 332** Sampling and Experimental Design
- **STAT 430** Experimental Design

Software Engineering Specialization

The Software Engineering Specialization is available for both the Bachelor of Computer Science (BCS) and the Bachelor of Mathematics (Computer Science (BMath) plans. This Specialization is offered jointly by the David R. Cheriton School of Computer Science and the Department of Electrical and Computer Engineering. Given that the specialization involves two faculties, it has slightly different realizations in those faculties. Students who complete this Specialization do not qualify for the professional engineering designation. The course requirements are the same as for the BCS and BMath with the following constraints on upper-year CS courses:
Foundations
All of

CS 445/ECE 451 Software Requirements Specification and Analysis
CS 446/ECE 452 Software Design and Architectures
CS 447/ECE 453 Software Testing, Quality Assurance and Maintenance
CS 492 The Social Implications of Computing

Applications
Two of

CS 343 Concurrent and Parallel Programming
CS 348 Introduction to Database Management
CS 349 User Interfaces

Two of

CS 444 Compiler Construction
CS 448 Database Systems Implementation
CS 449 Human-Computer Interaction
CS 450 Computer Architecture
CS 452 Real-time Programming
CS 454 Distributed Systems
CS 456 Computer Networks
CS 457 System Performance Evaluation
CS 458 Computer Security and Privacy
CS 484 Computational Vision
CS 485 Statistical and Computational Foundations of Machine Learning
CS 486 Introduction to Artificial Intelligence
CS 488 Introduction to Computer Graphics

Computer Science Minor
A Computer Science Minor is available to all Honours students except in combination with Computer Science plans. Excluded plans include Software Engineering, Computing and Financial Management, and joint plans involving Computer Science.

The Computer Science Minor is generally not available to students outside the Faculty of Mathematics because it includes several restricted courses. Students inside the Faculty of Mathematics may need to register as a Computer Science major for one or more terms to complete the Computer Science Minor.

Students are encouraged to consider the Computing Option as an alternative to the Computer Science Minor. Students may not complete both the Computer Science Minor and the Computing Option.

One of

MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

A minimum of eight CS courses including:

One of

CS 115 Introduction to Computer Science 1
CS 135 Designing Functional Programs
CS 145 Designing Functional Programs (Advanced Level)

One of

CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One additional course from CS 340-CS 398, CS 440-CS 498.

Five additional courses from CS 240-CS 299, CS 340-CS 398, CS 440-CS 498.
The average of all CS courses on the student’s record (including repeated courses) must be at least 60%.

Notes

1. Some CS courses are not available to students pursuing a CS Minor. Consult individual course requisites for details.
2. Students who are not eligible for the CS Minor are encouraged to consider the Computing Option.

Accelerated Master’s
Undergraduate students in the Bachelor of Mathematics Computer Science (CS) and the Bachelor of Computer Science (BCS) plans can, under some circumstances, take graduate courses in their fourth year that will count towards a Master of Mathematics (MMath) degree. Such students must have high grades and enough room in their schedule to take such courses without counting them toward the undergraduate degree.

Students interested in this opportunity should contact the coordinator of graduate studies for Computer Science or consult the Graduate Studies Academic Calendar.

Computing and Financial Management

Computing and Financial Management Overview and Degree Requirements
The objective of the Computing and Financial Management (CFM) program is to provide students with a strong core background in computer science and financial management. Careful selection of optional courses should permit graduates to go on to graduate studies in these disciplines, with a small number of supplemental courses.

The CFM program is offered jointly by the David R. Cheriton School of Computer Science and the School of Accounting and Finance. Students will be members of both the Faculty of Arts and the Faculty of Mathematics, although, for administrative purposes, they will be registered in a separate unit. The Honours Computing and Financial Management program leads to a Bachelor of Computing and Financial Management degree.

The course requirements for CFM reflect the interdisciplinary nature of this program, with eighteen courses from the Faculty of Mathematics, 18 courses from the Faculty of Arts, and four general electives, for a total of 40 courses.

Students in CFM must fulfil all the requirements of Table I, except the Communication Skills Requirement. A student’s standing in the program will be determined according to policies used in the Faculty of Mathematics. The Honours Computing and Financial Management program is also considered an Honours Computer Science plan for purposes of student access to math courses.

One of

CS 115 Introduction to Computer Science 1
CS 135 Designing Functional Programs
CS 145 Designing Functional Programs (Advanced Level)

Note: CFM students normally start in CS 135. Students with strong aptitude may take CS 145 and CS 146. Students who start in CS 115 must take CS 116 as an extra course before taking CS 136.

One of

CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)

One of

MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)
MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 (Advanced Level)

One of

MATH 128 Calculus 2 for the Sciences
MATH 138 Calculus 2 for Honours Mathematics
MATH 148 Calculus 2 (Advanced Level)

One of

MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of

STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of

STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

All of

AFM 101 Introduction to Financial Accounting
AFM 102 Introduction to Managerial Accounting
AFM 121 Introduction to Global Financial Markets
AFM 131 Introduction to Business in North America
AFM 231 Business Law
AFM 272/ACTSC 291 Corporate Finance 1
AFM 322 Derivative Securities
AFM 372/ACTSC 391 Corporate Finance 2
AFM 424 Equity Investments
AFM 425 Fixed Income Securities
CS 240 Data Structures and Data Management
CS 241 Foundations of Sequential Programs
CS 245 Logic and Computation
CS 246 Object-Oriented Software Development
CS 341 Algorithms
ECON 101 Introduction to Microeconomics
ECON 102 Introduction to Macroeconomics
STAT 373 Regression and Forecasting Methods in Finance

Two of

AFM 291 Intermediate Financial Accounting 1
Any AFM course at the 300- or 400-level not listed above
ECON 201 Microeconomic Theory for Business and Policy
ECON 206 Money and Banking 1
ECON 207 Economic Growth and Development 1
ECON 231 Introduction to International Economics
ECON 332 International Finance
MGMT 244 Principles of Marketing
PHIL 215 Professional and Business Ethics

Two additional AFM courses (1.0 unit) at the 300- or 400-level not listed above.
One additional course from CS 440-CS 498, CO 487.
Two additional courses from CS 251, CS 340-CS 398, CS 440-CS 498, CO 487.
Two of
ENGL 109 Introduction to Academic Writing
ENGL 119 Communications in Mathematics & Computer Science
EMLS 129R/ENGL 129R Written Academic English
SPCOM 223 Public Speaking

Four additional courses (2.0 units).

Notes

1. The Computing and Financial Management program’s academic curriculum is a combination of the curricula in Computer Science and Accounting and Financial Management, and therefore, cannot be combined with any plan, minor, or option offered by the David R. Cheriton School of Computer Science or the School of Accounting and Finance. Other plan combinations, minors, or options may be possible, but may require more than 40 courses (20.0 units) and/or more than the customary eight study terms to satisfy all of the various requirements. Plan combinations, minors, or options should not be considered without careful consultation with a Bachelor of Computing and Financial Management (BCFM) advisor.

2. BCFM students have a major average (MAV) based on all math courses and a special average (SMAV) based on all courses taken from the Faculty of Arts. To graduate with a BCFM degree, a student must have a MAV of at least 60% and a SMAV of at least 70%. Two of the Communication Skills courses (ENGL 109, ENGL 119, EMLS/ENGL 129R, and SPCOM 223) must be completed with a minimum grade of 65% before enrolling in 4A.

3. To continue in the BCFM program a student must normally meet the average requirements specified in the preceding note at the end of each term. The averages, however, are not computed until there are at least three courses available for the average. A student who does not meet the MAV or SMAV requirement at the end of a term, may, at the discretion of a BCFM advisor, be allowed to continue for an additional term in an attempt to raise the average(s) to the required standard.

4. The Bachelor of Computing and Financial Management (see the co-op Study/Work Sequence section) follows Sequence A. Deviations from this sequence can cause a delay in graduation of as much as one calendar year; therefore, alterations should not be considered without careful consultation with a BCFM advisor.

Admissions

The Bachelor of Computing and Financial Management (BCFM) Steering Committee, in consultation with the Faculties of Arts and Mathematics, and their admission committees, determines admission requirements for the BCFM program.

Minimum admission requirements are those of the Faculty of Mathematics, with admissions to the BCFM program handled by the Mathematics admissions committee, following policies set by the BCFM Steering committee.

English language requirements are those of the Faculty of Arts. Students will be required to have a minimum of 75% in English 4U (grade 12 university level) or equivalent.

Recognition of Excellence

Term Dean’s Honours List

The designation "Dean's Honours List" is awarded to any Bachelor of Computing and Financial Management (BCFM) student who satisfies either of the following criteria:

1. Completed a minimum of 5.0 units which count in the cumulative average, with a cumulative average of at least 80%.
2. Completed a minimum of 2.5 units in that term with numeric or letter grades, with no excluded courses, no grades of INC, IP, or UR (see Grades for full grade description), and a term average of at least 87%.

The Dean’s Honours List designation will appear on the student’s official University transcript.

Graduation Dean's Honours List

A BCFM student who satisfies either of the following criteria will graduate on the Dean's Honours List.

1. A cumulative overall average of 80% with no INC, IP, or UR grades
2. A cumulative overall average of 87% with no INC, IP, or UR grades. Any student who satisfies this criterion will have their name displayed on the walls of the Mathematics & Computing Building (MC) corridor 4134.
The Dean's Honours List designation will appear on the student's official University transcript and diploma.

Mathematics/Business

Business Administration and Mathematics Double Degree

Overview

This double degree academic plan is administered jointly by the Faculty of Mathematics at the University of Waterloo and the Lazaridis School of Business and Economics at Wilfrid Laurier University. It is a restricted-enrolment plan with admission normally limited to Year One in fall term.

Students who successfully complete this plan will be eligible to attend both universities' convocation ceremonies and be awarded a Honours Bachelor of Mathematics (BMath) degree from Waterloo and a Honours Bachelor of Business Administration (BBA) degree from Laurier at the respective convocations.

Students may register for this plan at either university. The academic component is the same, regardless of where students are formally registered, but students participate in the co-op process at their home institution. Thus, the degree attached to each student's registered university is a co-op degree, with the other university's degree being a regular one.

This academic plan cannot be combined with any other major, minor, or option designation except as described in the notes below. It requires a minimum of nine full-time academic study terms and successful completion of a minimum of 52 one-term courses (26 units). These 52 courses (26 units) must include 24 (12 units) specified mathematics and computer science courses taken at Waterloo and 24 (12 units) specified business-related courses at Laurier. The remaining four (two units) elective courses may be taken at either university.

For Waterloo-registered students, the co-op process involves four (or five at a student's discretion) co-op work terms intermixed with study terms. The first of these work terms occurs during the spring (May to August period) between the second and third study terms. The complete sequencing of terms for Waterloo-registered students is listed in the [Study/Work Sequence](#) section. Students in this plan will be required to pay six co-op fees, which are usually assessed in the first three years of study.

For Laurier-registered students, the co-op process involves three (or four at a student's discretion) co-op work terms intermixed with the 10 study terms. The first of these work terms occurs during the January to April period between the third and fourth study terms. The earlier spring (May to August period) between the second and third study terms is an "off" term (where students are on their own for the term, similar to regular students). With the exception of this first May to August term being an "off" term rather than a co-op work term, the term sequencing for Laurier-registered students is identical to the one for Waterloo-registered students.

With the sequencing of study terms and work terms indicated above, the normal duration for this plan is four and two-thirds calendar years (or five calendar years at a student's discretion). Only under especially mitigating circumstances, and with the approval of both universities, can the term sequencing attached to the double degree plan be altered, and such instances will usually result in a delay (possibly as much as one calendar year) of graduation date.

All double degree plan students, regardless of their home university affiliation, are required to satisfy all term-by-term progression requirements of both Waterloo's Faculty of Mathematics and Laurier to remain eligible to continue in the plan, and to meet all graduation requirements of both institutions to be eligible for the two degrees. More specifically, students must ensure that their course selection each term, their academic performance level, and their academic conduct in general, comply with all the policies, procedures, regulations, and requirements of both universities. Failure to do so will normally result in students being required to withdraw from the double degree plan. These students may be able to enrol in a (single degree) plan at Waterloo (Bachelor of Mathematics (BMath) or BCS) or Laurier (BBA) depending upon their individual circumstances. Such students may not be eligible to continue in co-op in their new plan.

Degree Requirements

Students in this plan must fulfil all the requirements in [Table I](#) and [Table II](#). This must include the following specific requirements:

From the University of Waterloo

One of:

- **CO 250** Introduction to Optimization
- **CO 255** Introduction to Optimization (Advanced Level)
All of

ACTSC 231 Introductory Financial Mathematics
CO 370 Deterministic OR Models
CS 330 Management Information Systems
STAT 371 Applied Linear Models and Process Improvement for Business
STAT 372 Survey Sampling and Experimental Design Techniques for Business

Seven additional 200-, 300- or 400-level math courses.

From the Wilfrid Laurier University

All of

BUS 111W Understanding the Business Environment
BUS 121W Functional Areas of the Organization
BUS 127W Introduction to Financial Accounting
BUS 231W Business Law
BUS 247W Managerial Accounting
BUS 283W Financial Management I
BUS 288W Organizational Behaviour I
BUS 352W Introduction to Marketing Management
BUS 354W Human Resources Management
BUS 362W Building and Managing Products, Services and Brands
BUS 375W Operations Management
BUS 393W Financial Management II
BUS 398W Organizational Behaviour II
BUS 481W Business Policy I
BUS 491W Business Policy II
ECON 120W Introduction to Microeconomics
ECON 140W Introduction to Macroeconomics

One of

ECON 250W Intermediate Macroeconomic Analysis for Management
ECON 260W Intermediate Microeconomic Analysis for Management

Six additional 300- or 400-level BUS or ENTR elective courses (3.0 units) taken in third, fourth or fifth year.

From Waterloo or Laurier

Four additional elective courses (2.0 units) are required. Students are free to choose their elective courses from either university.

Notes

1. For details about the various Laurier Honours Bachelor of Business Administration (BBA) policies, procedures, regulations, and requirements that apply to this double degree plan, please consult the Laurier Calendar and/or one of the plan's academic advisors at Laurier.
2. W courses are offered by Laurier. See the Laurier Calendar for course details.
3. The abbreviations "BU" and "EC" are used in the Laurier Calendar for Business and Economics courses respectively.
4. Waterloo-registered students who meet all the academic graduation requirements for this plan, but who do not meet the minimum requirements for a co-op degree may, in exceptional circumstances and at the discretion of the Standing and Promotions (S&P) Committee, be awarded a Regular Honours BMath/Business Administration and Mathematics degree.
5. Students may, in certain circumstances, be permitted to have a minor and/or option designation on their Waterloo Bachelor of Mathematics (BMath) diploma and transcript. Such a designation must be in a Waterloo discipline outside the areas of study offered by the Lazaridis School of Business and Economics at Laurier, and it cannot duplicate a similar designation on the student's Laurier academic record. In addition to the approval of the academic unit offering the minor or option, students require the approval of a double degree academic advisor from both Waterloo and Laurier to enrol for such a minor or option designation on their Waterloo academic record. Students wishing to have a minor, option, or specialization designation on their Laurier academic record should consult the Laurier Calendar for details and discuss their situation with an academic advisor from the Lazaridis School of
Business and Economics at Laurier. Electing to have a separate major, minor, option, or specialization designation is not required for students in the double degree plan, and in some cases, satisfying the combined requirements for both the double degree plan and those for an extra designation may require successful completion of more than 52 courses.

Information Technology Management

Overview
The effective management of information technology is now a mission-critical component of virtually every enterprise. This plan is designed to equip graduates with the skills necessary to apply modern technology solutions to business processes.

Combining technical courses in computer science, business statistics, optimization, and finance with business courses in marketing, project management, electronic business and strategic management of technology, students will be well prepared for exciting careers in business.

Information Technology Management is a restricted-enrolment plan. Students are normally admitted at the Year One level into the Mathematics/Business Administration admission category. In Year Two, provided they remain eligible for an honours program, such students may select the Information Technology Management plan.

Students admitted to the Faculty in other admission categories may subsequently apply for transfer into Information Technology Management at a later date. However, to be admitted, such applicants will normally be required to have a “Good” or “Excellent” academic standing with a minimum 70.0 % cumulative overall average (CAV) based on at least 5.0 units of non-excluded courses.

Degree Requirements
Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 20 math courses, and the following specific requirements:

One of
- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

One of
- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)

All of
- CS 230 Introduction to Computers and Computer Systems
- CS 330 Management Information Systems
- CS 338 Computer Applications in Business: Databases
- CS 430 Applications Software Engineering
- CS 436 Networks and Distributed Computer Systems
- STAT 371 Applied Linear Models and Process Improvement for Business
- STAT 372 Survey Sampling and Experimental Design Techniques for Business

All of
- AFM 101 Introduction to Financial Accounting
- AFM 102 Introduction to Managerial Accounting
- BUS 111W Understanding the Business Environment
- BUS 121W Functional Areas of the Organization
- BUS 352W Introduction to Marketing Management
- BUS 481W Business Policy I
- COMM 231 Commercial and Business Law for Mathematics Students
- COMM 431 Project Management
- COMM 432 Electronic Business
- ECON 101 Introduction to Microeconomics
- ECON 102 Introduction to Macroeconomics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCI 211</td>
<td>Organizational Behaviour</td>
</tr>
<tr>
<td>MSCI 311</td>
<td>Organizational Design and Technology</td>
</tr>
<tr>
<td>STV 202</td>
<td>Design and Society</td>
</tr>
</tbody>
</table>

One of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCI 421</td>
<td>Strategic Management of Technology</td>
</tr>
<tr>
<td></td>
<td>Any 300- or 400-level STV course</td>
</tr>
</tbody>
</table>

One additional ACTSC course.

One additional 300- or 400-level math course.

Three additional courses (1.5 units).

Note

W courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.

Mathematical Economics

Overview

Economics and Mathematics are complementary disciplines. Indeed, much of current economic theory is expressed in terms of mathematical models, and most branches of economics use mathematical, statistical, and computational concepts extensively. Also, many advances in mathematics have been motivated by problems from economics.

The Faculty of Mathematics and the Faculty of Arts are proud to offer this collaborative plan. In addition to this Mathematical Economics plan offered by the Faculty of Mathematics, the Faculty of Arts also offers an Honours Mathematical Economics plan which leads to a Bachelor of Arts (BA) degree. Since the junior-level courses are common to both degrees, the structure of the plan makes it easier for students to switch between the two plans. Students contemplating an application to transfer faculties should consult an advisor regarding important effects of such a change (such applications are not automatically granted).

Degree Requirements

Legend

*Students must choose one of (ACTSC 372 or ECON 371) and one of (STAT 331 or ECON 421). If a student chooses ACTSC 372 or STAT 331, it will count as one of the mathematics group choices. If a student chooses ECON 371 or ECON 421, it will count as one of the economics group choices.

Students in this plan must fulfil all the requirements in **Table I** and **Table II**. This must include at least 22 math courses, and the following specific requirements:

All of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 101</td>
<td>Introduction to Microeconomics</td>
</tr>
<tr>
<td>ECON 102</td>
<td>Introduction to Macroeconomics</td>
</tr>
<tr>
<td>ECON 290</td>
<td>Models of Choice in Competitive Markets</td>
</tr>
<tr>
<td>ECON 306</td>
<td>Macroeconomics</td>
</tr>
<tr>
<td>ECON 391</td>
<td>Equilibrium in Market Economies</td>
</tr>
<tr>
<td>ECON 393</td>
<td>Market Failures</td>
</tr>
<tr>
<td>ECON 472</td>
<td>Senior Honours Essay</td>
</tr>
<tr>
<td>ECON 491</td>
<td>Advanced Microeconomics</td>
</tr>
<tr>
<td>ECON 496</td>
<td>Advanced Macroeconomics</td>
</tr>
</tbody>
</table>

One of

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 406</td>
<td>Money and Banking 2</td>
</tr>
<tr>
<td>ECON 407</td>
<td>Economic Growth and Development 2</td>
</tr>
<tr>
<td>ECON 408</td>
<td>Business Cycles</td>
</tr>
<tr>
<td>ECON 409</td>
<td>Workers, Jobs, and Wages</td>
</tr>
</tbody>
</table>

Economics group

Four (2.0 units) additional 300- or 400-level ECON courses*.
MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)

One of
CO 250 Introduction to Optimization
CO 255 Introduction to Optimization (Advanced Level)

All of
AMATH 331/PMATH 331 Applied Real Analysis
AMATH 350 Differential Equations for Business and Economics
STAT 331 Applied Linear Models
STAT 443 Forecasting

Mathematics group
Seven additional math courses*.

Two additional courses (1.0 units).

Note
For graduation and progression purposes, a student’s averages will be calculated according to the practices of the Faculty in which the student is formally registered. Should a student transfer from the Mathematics Faculty to the Arts Faculty (or vice versa), the student’s average calculations may be revised to reflect the differing average calculation rules.

Mathematics/Business Administration

Overview

The Faculty of Mathematics, in co-operation with various academic units from other faculties at the University of Waterloo and the Lazaridis School of Business and Economics at Wilfrid Laurier University, offers the Honours Mathematics/Business Administration plan.

The Mathematics/Business Administration plan provides an opportunity to combine courses in actuarial science, computer science, optimization, and statistics with courses in accounting, business, economics, human resource management, and management sciences. Graduates are well prepared to use sophisticated analytical techniques in the solution of business-related problems and adapt to the rapidly changing modern business environment.

Honours Mathematics/Business Administration is a restricted-enrolment plan. Most of the students enrolled in this plan are admitted at the Year One level directly into the Mathematics/Business Administration admission category.

Students admitted to the Faculty of Mathematics in other admission categories may subsequently apply for transfer to Mathematics/Business Administration at a later date. However, to be admitted, such applicants will normally be required to have a "Good" or "Excellent" academic standing with a minimum 70.0% cumulative overall average (CAV) based on at least 5.0 units of non-excluded courses. Applicants in good standing with less than a 70.0% CAV will also be considered on an individual basis if resources available at the time of their application should permit enrolling additional students in the plan.

Required BUS Courses at Laurier

In the plan requirements, courses with the prefix BUS are offered by the Lazaridis School of Business and Economics.

Degree Requirements

Students in this plan must fulfil all the requirements in [Table I](#) and [Table II](#). This must include at least 21 math courses, and the following specific requirements:

One of
MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)

One of
CO 250 Introduction to Optimization
CO 255 Introduction to Optimization (Advanced Level)
All of

- ACTSC 371 Introduction to Investments
- ACTSC 372 Corporate Finance
- AMATH 350 Differential Equations for Business and Economics
- CO 370 Deterministic OR Models
- CS 330 Management Information Systems
- CS 338 Computer Applications in Business: Databases
- STAT 371 Applied Linear Models and Process Improvement for Business
- STAT 372 Survey Sampling and Experimental Design Techniques for Business

Two additional math courses.

All of

- AFM 102 Introduction to Managerial Accounting
- BUS 111W Understanding the Business Environment
- BUS 121W Functional Areas of the Organization
- BUS 352W Introduction to Marketing Management
- BUS 481W Business Policy I
- COMM 231 Commercial and Business Law for Mathematics Students
- ECON 101 Introduction to Microeconomics
- ECON 102 Introduction to Macroeconomics
- HRM 200 Basic Human Resources Management

One of

- AFM 101 Introduction to Financial Accounting
- BUS 227W Introduction to Financial Accounting

One of

- MSCI 211 Organizational Behaviour
- PSYCH 238 Organizational Psychology

One additional 300- or 400-level COMM course.

One additional 300- or 400-level BUS or COMM course.

One additional course (0.5 unit) chosen from

- ARBUS 202/PHIL 215 Professional and Business Ethics
- COMM 400 Entrepreneurship, Technology and the Emerging Information Economy
- LS 271/PACS 202 Conflict Resolution
- LS 319/PACS 323 Negotiation: Theories and Strategies
- PSYCH 339 Personnel Psychology

Any AFM, BUS, COMM, ECON, HRM, MSCI, PSCI, or STV course

Three additional courses (1.5 units).

Note

W courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.

Mathematics/Chartered Professional Accountancy (co-op only)

Overview

The Faculty of Mathematics, in co-operation with the School of Accounting and Finance, offers the Honours Mathematics/Chartered Professional Accountancy (CPA) plan which combines mathematics with accounting and business-related disciplines.

In addition to providing excellent background preparation for careers in industry, this plan can lead to postgraduate studies in business-oriented disciplines. In particular, the Mathematics/CPA plan is specifically designed to be a prelude to Waterloo's two-term Master of Accounting (MAcc) graduate degree plan in the Faculty of Arts.

The Honours Mathematics/CPA plan provides an opportunity for studies in areas of mathematics including actuarial science, computer science, optimization, and statistics combined with an extensive professionally-
oriented sequence of accounting courses. Graduates are well prepared to play a leading role in the increasingly important development and utilization of computer-based accounting information systems, the analysis of the information provided by such systems and the subsequent decision-making processes, and allocation of resources so crucial to an organization's success in the modern business world.

This plan involves four co-op work terms, the first of which occurs in the winter term immediately following the fall 2A academic term (see Study/Work Sequence). Students are exempted from paying co-op fees for their 1A and 1B terms.

Admissions

Students normally apply for direct admission from high school into the first year of the Mathematics/CPA plan. Upon successful completion of a provisional first year, students will formally proceed into the Mathematics/CPA plan in second year. Successful completion of the provisional year requires all of the following:

- Successful completion of at least 5.0 units including the following courses: AFM 101, AFM 102, AFM 131; COMM 103/ECON 100 or (one of ECON 101, ECON 102); one of CS 115, CS 135, CS 145; MATH 135/MATH 145; MATH 136/MATH 146; MATH 137/MATH 147; MATH 138/MATH 148; SPCOM 111.
- A minimum average of 60% in all math courses taken to date.
- A minimum average of 70% in all AFM, COMM, or ECON courses taken to date.
- "Good standing" or "Excellent standing" in the Faculty of Mathematics.

Mathematics/CPA is a restricted-enrolment plan, and admission into the plan for students not currently enrolled in the provisional year is not normally granted.

Degree Requirements

Legend

AFM 131 may be substituted with consent of the department.

Students in this plan must fulfil all the requirements in **Table I**. This must include at least 18 math courses, and the following specific requirements:

One of

- **CS 115** Introduction to Computer Science 1
- **CS 135** Designing Functional Programs
- **CS 145** Designing Functional Programs (Advanced Level)

One of

- **CS 116** Introduction to Computer Science 2
- **CS 136** Elementary Algorithm Design and Data Abstraction
- **CS 146** Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

- **MATH 127** Calculus 1 for the Sciences
- **MATH 137** Calculus 1 for Honours Mathematics
- **MATH 147** Calculus 1 (Advanced Level)

One of

- **MATH 128** Calculus 2 for the Sciences
- **MATH 138** Calculus 2 for Honours Mathematics
- **MATH 148** Calculus 2 (Advanced Level)

One of

- **MATH 135** Algebra for Honours Mathematics
- **MATH 145** Algebra (Advanced Level)

One of

- **MATH 136** Linear Algebra 1 for Honours Mathematics
- **MATH 146** Linear Algebra 1 (Advanced Level)
One of

STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of

STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

All of

AFM 272/ACTSC 291 Corporate Finance 1
AFM 372/ACTSC 391 Corporate Finance 2
AFM 476/ACTSC 471 Advanced Corporate Finance
STAT 373 Regression and Forecasting Models in Finance

One of

AFM 231/LS 283 Business Law
COMM 231 Commercial and Business Law for Mathematics Students

All of

AFM 101 Introduction to Financial Accounting
AFM 102 Introduction to Managerial Accounting
AFM 132 Introduction to Business Stages*
AFM 212 Financial Analysis and Planning
AFM 291 Intermediate Financial Accounting 1
AFM 311 Connections to Ethical Context
AFM 341 Accounting Information Systems
AFM 351 Audit Strategy
AFM 362 Taxation 1 - Foundations
AFM 363 Taxation 2 - Integration
AFM 391 Intermediate Financial Accounting 2
AFM 401 Accounting Theory
AFM 433 Business Strategy
AFM 462 Taxation 3 - Tax Planning Topics
AFM 479 Cases and Applications in Finance II
AFM 481 Cost Management Systems
AFM 482 Performance Measurement and Organization Control
AFM 491 Advanced Financial Accounting
COMM 103/ECON 100 Principles of Economics or (ECON 101 Introduction to Microeconomics and ECON 102 Introduction to Macroeconomics)
SPCOM 111 Leadership, Communication, and Collaboration

Two of

AFM 205 Introduction to Financial Services
AFM 206 Introduction to Tax
AFM 207 Introduction to Analytics
AFM 208 Introduction to Assurance

Six additional math courses (3.0 units).

One additional AFM, COMM, ECON, MSCI, or math course (0.5 unit).

Notes

1. AFM 363, AFM 401, AFM 462, AFM 482, AFM 491 may be substituted with an acceptable 300-/400-level AFM elective, with the understanding that any such substitution would forfeit MAcc admission eligibility and will impact the path to a CPA designation pursued through CPA Ontario.
2. Students may take AFM 322 and AFM 424 to replace the AFM 479 and the "One additional AFM, COMM, ECON, MSCI, or math course" degree requirements.
3. There is very little flexibility for altering the academic/work-term sequence prescribed for the Mathematics/Chartered Professional Accountancy (Math/CPA) plan (see Study/Work Sequence) because of limited term offerings and structured prerequisites for most AFM courses. Since deviations from this sequence can cause a delay in graduation of as much as one calendar year, alterations should not be considered without careful consultation with the CPA academic advisor.

4. The order in which required non-math courses in this plan are taken is very important, and there is little room for flexibility (for the same reasons in Note 1 above). During the class enrolment period each term, students should be sure to consult with their academic advisor.

5. Students may not repeat an AFM course in which they have obtained a grade of 60% or higher. AFM courses completed with a grade in the range 50 - 59% may be repeated, but only once, and then only with approval from the School of Accounting and Finance.

6. Students who have attempted, to the satisfaction of the Standings and Promotions (S&P) Committee and Co-operative Education and Career Action, to gain employment for all four available work terms, but are successful in so doing for only three work terms, will be eligible for a co-op degree, provided they have received credit for all three of their work terms and all three of their work reports, and they have successfully completed all academic graduation requirements. Students who are successful in gaining acceptable employment for four work terms will be required to have credit for all four work terms and all four work reports in order to qualify for a co-op degree.

7. Students who meet all the academic graduation requirements for this plan, but who do not meet the minimum requirements for a co-op degree (see preceding Note 4) may, in exceptional circumstances and at the discretion of the S&P Committee, be awarded a regular Honours Mathematics/Chartered Professional Accountancy degree.

8. In order to meet the requirements of both the Faculty of Mathematics and the School of Accounting and Finance, the Math/CPA plan requires the successful completion of 41 courses.

Tuition
This is a high-fee plan. As such, tuition higher than the normal University of Waterloo tuition is required.

Eligibility for Waterloo's Master of Accounting (MAcc) Academic Plan
The Math/CPA plan is designed to lead to the University of Waterloo Master in Accounting (MAcc) degree. Students should consult the MAcc website to ascertain specific MAcc admission criteria for Math/CPA graduates.

Finance Option (co-op only)

Legend
AFM 131 may be substituted with consent of the department.

Students in this option must fulfill all the requirements in **Table I**. This must include at least 18 math courses, and the following specific requirements:

One of

- **CS 115** Introduction to Computer Science 1
- **CS 135** Designing Functional Programs
- **CS 145** Designing Functional Programs (Advanced Level)

One of

- **CS 116** Introduction to Computer Science 2
- **CS 136** Elementary Algorithm Design and Data Abstraction
- **CS 146** Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

- **MATH 127** Calculus 1 for the Sciences
- **MATH 137** Calculus 1 for Honours Mathematics
- **MATH 147** Calculus 1 (Advanced Level)

One of

- **MATH 128** Calculus 2 for the Sciences
- **MATH 138** Calculus 2 for Honours Mathematics
- **MATH 148** Calculus 2 (Advanced Level)
One of

MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)

One of

MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)

One of

MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)

One of

STAT 230 Probability
STAT 240 Probability (Advanced Level)

One of

STAT 231 Statistics
STAT 241 Statistics (Advanced Level)

All of

ACTSC 231 Introductory Financial Mathematics
AFM 272/ACTSC 291 Corporate Finance 1
AFM 372/ACTSC 391 Corporate Finance 2
AFM 476/ACTSC 471 Advanced Corporate Finance
STAT 373 Regression and Forecasting Models in Finance

One of

AFM 231/LS 283 Business Law
COMM 231 Commercial and Business Law for Mathematics Students

All of

AFM 101 Introduction to Financial Accounting
AFM 102 Introduction to Managerial Accounting
AFM 132 Introduction to Business Stages*
AFM 205 Introduction to Financial Services
AFM 212 Financial Analysis and Planning
AFM 291 Intermediate Financial Accounting 1
AFM 311 Connections to Ethical Context
AFM 341 Accounting Information Systems
AFM 351 Audit Strategy
AFM 362 Taxation 1 - Foundations
AFM 363 Taxation 2 - Integration
AFM 391 Intermediate Financial Accounting 2
AFM 401 Accounting Theory
AFM 433 Business Strategy
AFM 462 Taxation 3 - Tax Planning Topics
AFM 479 Cases and Applications in Finance II
AFM 481 Cost Management Systems
AFM 482 Performance Measurement and Organization Control
AFM 491 Advanced Financial Accounting
COMM 103/ECON 100 Principles of Economics or (ECON 101 Introduction to Microeconomics and ECON 102 Introduction to Macroeconomics)
SPCOM 111 Leadership, Communication, and Collaboration
One of

AFM 206 Introduction to Tax
AFM 207 Introduction to Analytics
AFM 208 Introduction to Assurance

Two of

ACTSC 371 Introduction to Investments
CS 335 Computational Methods in Business and Finance
MATBUS 471 Fixed Income Securities
MATBUS 472 Risk Management
STAT 334 Probability Models for Business and Accounting

Two of

AFM 321 Personal Financial Planning
AFM 322 Derivative Securities
AFM 328 and AFM 329, or AFM 328 and AFM 428, or AFM 329 and AFM 429 Investment Management (0.25 unit each)
AFM 415 Special Topics or AFM 416 Special Topics in Finance
AFM 423 Topics in Financial Econometrics
AFM 434 Governance and Enterprise Risk Management for Global Organizations
AFM 477 Mergers and Acquisitions
AFM 478 International Financial Management
AFM 492 Financial Statement Analysis

Two additional math courses (1.0 unit).

Notes

1. AFM 363, AFM 401, AFM 462, AFM 482, AFM 491 may be substituted with an acceptable 300-/400-level AFM elective, with the understanding that any such substitution would forfeit MAcc admission eligibility and will impact the path to a CPA designation pursued through CPA Ontario.
2. Students in this option may take AFM 322 and AFM 424 to replace the AFM 479 degree requirement. If so, students need only take one of the remaining AFM courses in the above "Two of" list of AFM courses.
3. There is very little flexibility for altering the academic/work-term sequence prescribed for the Mathematics/Chartered Professional Accountancy (Math/CPA) - Finance option (see Study/Work Sequence) because of limited term offerings and structured prerequisites for most AFM courses. Since deviations from this sequence can cause a delay in graduation of as much as one calendar year, alterations should not be considered without careful consultation with the CPA academic advisor.
4. The order in which required non-math courses in this plan are taken is very important, and there is little room for flexibility (for the same reasons in Note 3 above). During the class enrolment period each term, students should be sure to consult with their academic advisor.
5. Students may not repeat an AFM course in which they have obtained a grade of 60% or higher. AFM courses completed with a grade in the range 50 - 59% may be repeated, but only once, and then only with approval from the School of Accounting and Finance.
6. Students who have attempted, to the satisfaction of the Standings and Promotions (S&P) Committee and Co-operative Education and Career Action, to gain employment for all four available work terms, but are successful in so doing for only three work terms, will be eligible for a co-op degree, provided they have received credit for all three of their work terms and all three of their work reports, and they have successfully completed all academic graduation requirements. (Students who are successful in gaining acceptable employment for four work terms will be required to have credit for all four work terms and all four work reports in order to qualify for a co-op degree.)
7. Students who meet all the academic graduation requirements for this option, but who do not meet the minimum requirements for a co-op degree (see preceding Note 6) may, in exceptional circumstances and at the discretion of the S&P Committee, be awarded a regular Honours Mathematics/Chartered Professional Accountancy degree.
8. In order to meet the requirements of both the Faculty of Mathematics and the School of Accounting and Finance, the Math/CPA - Finance option requires the successful completion of 42 courses.
Tuition
This is a high-fee plan. As such, tuition higher than the normal University of Waterloo tuition is required.

Eligibility for Waterloo's Master of Accounting (MAcc) Academic Plan
The Math/CPA plan is designed to lead to the University of Waterloo Master in Accounting (MAcc) degree. Students should consult the [MAcc website](https://www.uwaterloo.ca/mac) to ascertain specific MAcc admission criteria for Math/CPA graduates.

Mathematics/Financial Analysis and Risk Management

Overview
A strong quantitative background is essential for success in the financial analysis and risk management areas. The escalating use of financial derivatives for both hedging and speculation, new governance and banking regulations, and more complex reporting requirements are increasing the demand for professionals with the mathematical background necessary to understand the broad impact these issues can have.

The Faculty of Mathematics is proud to offer this plan, which is designed for students who are interested in working in finance, banking, insurance, or industrial firms in financial analysis or risk management. The two specializations available, Chartered Financial Analyst (CFA) and Professional Risk Management (PRM), provide excellent preparation for the required professional examinations necessary for those designations.

Both the Mathematics/CFA and Mathematics/PRM specialization plans are restricted-enrolment plans. Most of the students enrolled in these plans are admitted at the Year One level directly into the Mathematics/Financial Analysis and Risk Management admission category. In 3A, students must select the specific specialization of their choice.

Degree Requirements

Legend
- *CS 476 may require additional courses as prerequisites.

Students in this plan must fulfil all the requirements in Table I and Table II and the following specific requirements along with four academic milestones which must be completed at or before specified times:

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

All of

- **ACTSC 231** Introductory Financial Mathematics
- **ACTSC 371** Introduction to Investments
- **ACTSC 372** Corporate Finance
- **AMATH 350** Differential Equations for Business and Economics
- **CS 330** Management Information Systems
- **STAT 334** Probability Models for Business and Accounting or (**STAT 330** Mathematical Statistics and **STAT 333** Applied Probability)
- **STAT 371** Applied Linear Models and Process Improvement for Business

One of

- **ACTSC 446** Mathematics of Financial Markets
- **MATBUS 470** Derivatives

One of

- **CO 250** Introduction to Optimization
- **CO 255** Introduction to Optimization (Advanced Level)

One of
CS 335 Computational Methods in Business and Finance
CS 476 Numeric Computation for Financial Modeling*

All of

AFM 101 Introduction to Financial Accounting
AFM 102 Introduction to Managerial Accounting
AFM 131 Introduction to Business in North America
COMM 101 Introduction to Financial Markets
COMM 231 Commercial and Business Law for Mathematics Students
ECON 101 Introduction to Microeconomics
ECON 102 Introduction to Macroeconomics

One additional 300- or 400- level math course.

All of the courses required for one of the two specialization choices below.

Chartered Financial Analyst Specialization
All of

CO 372 Portfolio Optimization Models
MATBUS 471 Fixed Income Securities

All of

ARBUS 307/MGMT 244 Principles of Marketing
COMM 321 Intermediate Accounting for Finance
COMM 421 Financial Statement Analysis
COMM 433 Income Tax for Finance students

One of

ECON 206 Money and Banking I
ECON 207 Economic Growth and Development I
ECON 290 Models of Choice in Competitive Markets

One of

HRM 200 Basic Human Resources Management
MSCI 211 Organizational Behaviour
PSYCH 238 Organizational Psychology

Professional Risk Management Specialization
One of

ACTSC 445 Quantitative Enterprise Risk Management
MATBUS 472 Risk Management

All of

AMATH 331/PMATH 331 Applied Real Analysis
CS 338 Computer Applications in Business: Databases
MATBUS 471 Fixed Income Securities

One of

CO 370 Deterministic OR Models
CO 372 Portfolio Optimization Models

One of

STAT 340 Computer Simulation of Complex Systems
STAT 341 Computational Statistics and Data Analysis

One additional course (0.50 unit) labelled BUS, COMM, ECON, HRM, or MSCI.
Two additional non-math courses (1.0 units).

Milestones

Students receive $1,000,000 CAD in a virtual brokerage account and they use this cash during their study to manage a portfolio which includes stocks, bonds, options, futures, currencies, and other securities from over 55 exchanges in over 30 countries. Students will be required to trade various securities, engage in various trading strategies and portfolio allocation strategies. Each milestone comes with explicit deliverables that students must submit electronically and meet to receive credit. The first milestone cannot be completed before eight months from the date of their first trade has elapsed. The last milestone must be completed in the student’s final 4B term, not less than two months prior to the end of the term. No milestone can be submitted within six months of the most recent milestone submission date.

Notes

1. Any Financial Analysis and Risk Management (FARM) student who meets all the course requirements for one of the two specializations, but who does not meet the [special major average (SMAV)](#) requirements, will be eligible to graduate in the Mathematics/Business Administration plan, either regular or co-op, as appropriate.
2. W courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.

Mathematical Optimization

Overview

Mathematical Optimization (MO) is a branch of mathematics that develops and studies analytic tools to model and solve complex optimization problems arising in real world applications. It focuses on decision problems where scarce resources need to be allocated effectively, in complex, dynamic, and uncertain conditions.

Practical examples for MO applications include enhanced scheduling for airline crews and sports games, improved production and distribution efficiency for manufacturing companies, increased service quality and efficiency in healthcare administration, and development of sophisticated tools for finance and investments.

The honours plan in MO combines a solid foundation in mathematics with special sequences of courses in economics, business, and management science. The mathematics portion of the plan includes combinatorics, linear optimization, modeling, scheduling, forecasting, decision theory, and computer simulation. Students in MO must choose from one of two specializations: Operations Research Specialization or the Business Specialization.

Degree Requirements

Mathematical Optimization

Students in this plan must fulfil all the requirements in [Table I](#) and [Table II](#). This must include at least 26 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

One of

- AMATH 242/CS 371 Introduction to Computational Mathematics
- CS 370 Numerical Computation

One of

- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)
One of

- **CS 330** Management Information Systems
- **CS 490** Information Systems Management

All of

- **CO 370** Deterministic OR Models
- **STAT 340** Computer Simulation of Complex Systems

All of

- **AFM 101** Introduction to Financial Accounting
- **ECON 101** Introduction to Microeconomics
- **MSCI 211** Organizational Behaviour

Three additional courses chosen from

- **CO 342** Introduction to Graph Theory
- **CO 351** Network Flow Theory
- **CO 353** Computational Discrete Optimization
- **CO 367** Nonlinear Optimization
- **CO 372** Portfolio Optimization Models
- **CO 450** Combinatorial Optimization
- **CO 452** Integer Programming
- **CO 453** Network Design
- **CO 454** Scheduling
- **CO 456** Introduction to Game Theory
- **CO 463** Convex Optimization and Analysis
- **CO 466** Continuous Optimization
- **CO 471** Semidefinite Optimization

In addition to the above, students must complete the requirements for one of the specializations below.

Note
No course that is used to satisfy the requirements above can be used to satisfy any of the requirements for a specialization below.

Operations Research Specialization

One of

- **CO 351** Network Flow Theory
- **CO 353** Computational Discrete Optimization

 (if CO 255 is taken, this requirement may be replaced by one of CO 450 to CO 471)

All of

- **CS 234** Data Types and Structures
- **STAT 331** Applied Linear Models
- **STAT 333** Applied Probability

Two of

- **AFM 102** Introduction to Managerial Accounting
- **ECON 102** Introduction to Macroeconomics
- **MSCI 311** Organizational Design and Technology
- **MSCI 432** Production and Service Operations Management

One additional course chosen from

- **AMATH 250** Introduction to Differential Equations
- **CO 487** Applied Cryptography
- **CS 338** Computer Applications in Business: Databases
- **CS 430** Applications Software Engineering
STAT 332 Sampling and Experimental Design
STAT 433 Stochastic Processes
STAT 435 Statistical Methods for Process Improvements
STAT 443 Forecasting

Two additional math courses.

Business Specialization
All of

ACTSC 371 Introduction to Investments
AFM 102 Introduction to Managerial Accounting
BUS 111W Understanding the Business Environment
BUS 121W Functional Areas of the Organization
BUS 352W Introduction to Marketing Management
BUS 481W Business Policy I
CS 338 Computer Applications in Business: Databases
ECON 102 Introduction to Macroeconomics
MSCI 432 Production and Service Operations Management
STAT 371 Applied Linear Models and Process Improvement for Business
STAT 372 Survey Sampling and Experimental Design Techniques for Business

Two additional courses chosen from

AMATH 350 Differential Equations for Business and Economics
BUS 435W Supply Chain Management
BUS 445W Information Systems for Supply Chain Management
BUS 455W Transportation and Facilities Management
BUS 485W Environmental Management for Operations
CS 230 Introduction to Computers and Computer Systems
CS 234 Data Types and Structures
MSCI 311 Organizational Design and Technology
MSCI 421 Strategic Management of Technology
MSCI 423 Managing New Product and Process Innovation
MSCI 436 Decision Support Systems
STAT 440 Computational Inference
STAT 442 Data Visualization
STAT 444 Statistical Learning - Function Estimation

Notes

1. The Mathematical Optimization – Business Specialization cannot be combined with any other Business or Accounting plan.
2. W courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.
3. Students may replace the Computer Science courses listed above with the corresponding courses available to Honours Computer Science major students.
4. Students in the Bachelor of Business Administration/Bachelor of Mathematics (BBA/BMath) or Bachelor of Business Administration/Bachelor of Computer Science (BBA/BCS) Double Degree plan may make the following course substitutions towards the Mathematical Optimization – Operations Research Specialization:
 - BUS 127W/BUS 227W for AFM 101
 - BUS 247W for AFM 102
 - ECON 120W for ECON 101
 - ECON 140W for ECON 102
 - BUS 288W for MSCI 211
 - STAT 371 and STAT 372 for STAT 331 and STAT 332

Mathematical Studies

Overview
The Mathematical Studies plan is meant for students whose mathematical interests are broadly based. Its high degree of flexibility makes it suitable for those who wish to design a course of study that suits their
individual tastes. Under this plan, there is ample scope for students to obtain a minor in an area of mathematics or a minor from another faculty. With judicious course selections, graduates of Mathematical Studies can confidently pursue careers in business, teaching, or public service.

Degree Requirements

Mathematical Studies

Students in this plan must fulfil all the requirements in Table 1. This must include at least 26 math courses (see Note below), and the following specific requirements:

One of

CS 115 Introduction to Computer Science 1
CS 135 Designing Function Programs
CS 145 Designing Function Programs (Advanced Level)

One of

CS 116 Introduction to Computer Science 2
CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)

One of

MATH 135 Algebra for Honours Mathematics
MATH 145 Algebra (Advanced Level)

One of

MATH 106 Applied Linear Algebra 1
MATH 136 Linear Algebra 1 for Honours Mathematics
MATH 146 Linear Algebra 1 (Advanced Level)

One of

MATH 127 Calculus 1 for the Sciences
MATH 137 Calculus 1 for Honours Mathematics
MATH 147 Calculus 1 (Advanced Level)

One of

MATH 128 Calculus 2 for the Sciences
MATH 138 Calculus 2 for Honours Mathematics
MATH 148 Calculus 2 (Advanced Level)

One of

MATH 207 Calculus 3 (Non-Specialist Level)
MATH 229 Introduction to Combinatorics (Non-Specialist Level)
MATH 237 Calculus 3 for Honours Mathematics
MATH 247 Calculus 3 (Advanced Level)
MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of

MATH 225 Applied Linear Algebra 2
MATH 235 Linear Algebra 2 for Honours Mathematics
MATH 245 Linear Algebra 2 (Advanced Level)

One of

STAT 220 Probability (Non-Specialist Level)
STAT 230 Probability
STAT 240 Probability (Advanced Level)
One of

- STAT 221 Statistics (Non-Specialist Level)
- STAT 231 Statistics
- STAT 241 Statistics (Advanced Level)

Ten 300- or 400-level math courses.

Note
Students in Mathematical Studies who complete a minor or joint honours plan in a discipline outside the Faculty of Mathematics are only required to complete 24 math courses.

Specialization

Business Specialization
This plan has the same course requirements as [Honours Mathematical Studies](https://ugradcalendar.uwaterloo.ca/printing/?groupId=117) except that:

1. 24 math courses must be included
2. the following additional requirements on course selection must be included

One of

- AFM 272/ACTSC 291 Corporate Finance 1
- ACTSC 221 Introductory Financial Mathematics (Non-Specialist Level)
- ACTSC 231 Introductory Financial Mathematics
- ACTSC 371 Introduction to Investments

All of

- AFM 101 Introduction to Financial Accounting
- AFM 102 Introduction to Managerial Accounting
- BUS 121W Functional Areas of the Organization
- ECON 101 Introduction to Microeconomics
- ECON 102 Introduction to Macroeconomics

One of

- AFM 131/ARBUS 101 Introduction to Business in North America
- BUS 111W Understanding the Business Environment

One of

- ARBUS 302/MGMT 244 Principles of Marketing
- BUS 352W Introduction to Marketing Management

One of

- CO 227 Introduction to Optimization (Non-Specialist Level)
- CO 250 Introduction to Optimization
- CO 255 Introduction to Optimization (Advanced Level)

One of

- CO 327 Deterministic OR Models (Non-Specialist Level)
- CO 370 Deterministic OR Models

Two of

- CS 200 Concepts for Advanced Computer Usage
- CS 338 Computer Applications in Business: Databases
- CS 430 Applications Software Engineering
- CS 432 Business Systems Analysis
- STAT 340 Computer Simulation of Complex Systems

All of
CS 330 Management Information Systems

Three additional courses chosen from

- LS 271/PACS 202 Conflict Resolution
- LS 319/PACS 323 Negotiation: Theories and Strategies
- Any AFM, BUS (see Wilfrid Laurier University calendar), COMM, ECON, HRM, MSCI, STV courses

One of

- STAT 321 Regression and Forecasting (Non-Specialist Level)
- STAT 322 Sampling and Experimental Design (Non-Specialist Level)

Seven additional math courses (3.5 units).

A minimum of 10 300- or 400-level math courses (5.0 units), including any taken to satisfy the requirements above.

Note

W courses are offered by Laurier. See the Laurier Calendar for course details.

Mathematics/Teaching

Overview

The co-operative Mathematics Teaching plan combines academic studies in mathematics, teaching experience in secondary schools, professional training, and other work experience.

Students interested in this restricted-enrolment plan should enrol in the Honours Mathematics co-operative plan in Year One, and will be considered for admission to Teaching in Year Two on the basis of an interview, satisfactory academic standing, and good standing in co-op.

Work-term arrangements in this option differ from other co-operative plans offered in the Faculty (see the Study/Work Sequence section). Details concerning this are available from the academic advisors or the coordinator for this plan.

Degree Requirements

Mathematics/Teaching (co-op only)

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 24 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)

All of

- ACTSC 221 Introductory Financial Mathematics (Non-Specialist Level)
- CO 250 Introduction to Optimization
- CS 234 Data Types and Structures

One of

- AMATH 250 Introduction to Differential Equations
- AMATH 251 Introduction to Differential Equations (Advanced Level)
- AMATH 343 Discrete Models in Applied Mathematics

One of

- AMATH 331/PMATH 331 Applied Real Analysis
- AMATH 332/PMATH 332 Applied Complex Analysis
- PMATH 333 Introduction to Real Analysis
One of

- **CO 380** Mathematical Discovery and Invention
- **CO 480** History of Mathematics

One of

- **CS 230** Introduction to Computers and Computer Systems
- **CS 330** Management Information Systems
- **CS 338** Computer Applications in Business: Databases
- **CS 370** Numerical Computation
- **CS 430** Applications Software Engineering
- **CS 436** Networks and Distributed Computer Systems

One of

- **PMATH 320** Euclidean Geometry
- **PMATH 321** Non-Euclidean Geometry
- **PMATH 330** Introduction to Mathematical Logic
- **PMATH 340** Elementary Number Theory

One of

- **PMATH 334** Introduction to Rings and Fields with Applications
- **PMATH 336** Introduction to Group Theory with Applications
- **PMATH 347** Groups and Rings

One of

- **STAT 331** Applied Linear Models
- **STAT 332** Sampling and Experimental Design
- **STAT 333** Applied Probability

All of

- **MTHEL 206A** Introduction to Mathematics Education
- **PSYCH 101/PSYCH 101R** Introductory Psychology

One of

- **PSYCH 211** Developmental Psychology
- **PSYCH 212/PSYCH 212R** Educational Psychology

Eight 300- or 400-level math courses, including any taken to satisfy the above requirements.

Recommended non-math course

- **SOC 207/SOC 207R** Sociology of Education

Notes

1. Successful completion of the academic requirements for any of the departmental honours plans "X" in the Faculty of Mathematics, leading to a Bachelor of Mathematics (BMath) degree, will be accepted as a replacement for the math course requirements listed above provided that "X" is not a Mathematical Studies plan. All requirements specified in Table II must be completed, however, even if the departmental honours plan provides exemptions from any of those requirements. Students who elect this option will be designated by a plan label such as "Honours 'X'/Teaching" rather than "Honours Mathematics/Teaching".
2. The selection of courses required for BMath/Teaching must include a second teaching subject. Options for the second teaching subject are chosen from the subjects available at Ontario Faculties of Education in consultation with the Math/Teaching plan academic advisors.

Plans for Students outside the Mathematics Faculty
Joint Bachelor of Computer Science
Joint Bachelor of Computer Science plan requirements.

Joint Honours Academic Plans with Mathematics
The requirements listed below apply for all students admitted to the Mathematics portion of such joint honours plans for the fall 2004 term or thereafter.

Course Requirements for Admission
Joint Honours Mathematics is only open to non-math students enrolled in an Honours program. To be admitted to Joint Honours Mathematics a student must have, at most, 3.0 units of failed courses and must have completed the following requirements:

One of

- **MATH 106** Applied Linear Algebra 1 with at least 70%
- **MATH 136** Algebra for Honours Mathematics with at least 60%
- **MATH 146** Algebra for Honours Mathematics (Advanced Level)

One of

- **MATH 127** Calculus 1 for the Sciences with at least 70%
- **MATH 137** Calculus 1 for Honours Mathematics with at least 60%
- **MATH 147** Calculus 1 for Honours Mathematics (Advanced Level)

One of

- **MATH 128** Calculus 2 for the Sciences with at least 70%
- **MATH 138** Calculus 2 for Honours Mathematics with at least 60%
- **MATH 148** Calculus 2 for Honours Mathematics (Advanced Level)

One of

- **MATH 225** Applied Linear Algebra 2 with at least 70%
- **MATH 235** Linear Algebra 2 for Honours Mathematics with at least 60%
- **MATH 245** Linear Algebra 2 for Honours Mathematics (Advanced Level)

One of

- **CS 115** Introduction to Computer Science 1 with at least 70%
- **CS 135** Designing Functional Programs with at least 60%
- **CS 145** Designing Functional Programs (Advanced Level)

One of

- **CS 116** Introduction to Computer Science 2 with at least 70%
- **CS 136** Elementary Algorithm Design and Data Abstraction with at least 60%
- **CS 146** Elementary Algorithm Design and Data Abstraction (Advanced Level)

Additional Course Requirements
One of

- **MATH 135** Algebra for Honours Mathematics
- **MATH 145** Algebra (Advanced Level)

One of

- **STAT 220** Probability (Non-Specialist Level)
- **STAT 230** Probability
- **STAT 240** Probability (Advanced Level)

One of

- **STAT 221** Statistics (Non-Specialist Level)
- **STAT 231** Statistics
- **STAT 241** Statistics (Advanced Level)
One of

- **MATH 207** Calculus 3 (Non-Specialist Level)
- **MATH 229** Introduction to Combinatorics (Non-Specialist Level)
- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 239** Introduction to Combinatorics
- **MATH 247** Calculus 3 (Advanced Level)
- **MATH 249** Introduction to Combinatorics (Advanced Level)

Four additional math courses that qualify for Honours Bachelor of Mathematics (BMath) degree credit.

Maximum Failure Requirement
The maximum number of failures allowed for a Joint Mathematics academic plan is 3.0 units.

Graduation Average Requirement
To graduate in a Joint Honours Mathematics plan, a minimum average of 60% over all math courses is required.

Notes
1. A Joint Honours cannot be combined with the Mathematical Economics plan offered in the Faculty of Arts.
2. A Joint Honours cannot be combined with the Mathematical Physics plan offered in the Faculty of Science.
3. A Joint Honours cannot be combined with a Joint Bachelor of Computer Science.

Combinatorics and Optimization Minor
Combinatorics and Optimization Minor [requirements](#).

Computing Option
Computing Option [requirements](#).

Mathematics Minor
A Mathematics Minor is available for Honours or Four-Year General students in other faculties. This minor requires a total of 10 math courses (5.0 units) which must include the following specific courses:

One of

- **MATH 106** Applied Linear Algebra 1
- **MATH 114** Linear Algebra for Science
- **MATH 115** Linear Algebra for Engineering

One of

- **MATH 116** Calculus 1 for Engineering
- **MATH 117** Calculus 1 for Engineering
- **MATH 127** Calculus 1 for the Sciences

One of

- **MATH 118** Calculus 2 for Engineering
- **MATH 119** Calculus 2 for Engineering
- **MATH 128** Calculus 2 for the Sciences

Two of

- **STAT 220** Probability (Non-Specialist Level)
- **STAT 221** Statistics (Non-Specialist Level)
- **STAT 321** Regression and Forecasting (Non-Specialist Level)
- **STAT 322** Sampling and Experimental Design (Non-Specialist Level)

One of

- **CS 115** Introduction to Computer Science 1
- **CS 135** Designing Functional Programs
- **CS 145** Designing Functional Programs (Advanced Level)
One of

- **CS 116** Introduction to Computer Science 2
- **CS 136** Elementary Algorithm Design and Data Abstraction
- **CS 146** Elementary Algorithm Design and Data Abstraction (Advanced Level)

Three additional math courses which qualify for Bachelor of Mathematics (BMath) degree credit. The average of all math courses must be at least 60%, and at most two math courses may have failing grades.

Notes

1. The Mathematics Minor designation is not available to students pursuing a Joint Honours with Mathematics or a Joint Bachelor of Computer Science.
2. A student who obtains a Mathematics Minor may not also obtain another Minor or option offered by the Faculty of Mathematics.
3. A Mathematics Minor cannot be combined with the Mathematical Economics plan offered in the Faculty of Arts.
4. A Mathematics Minor cannot be combined with the Mathematical Physics plan offered by the Faculty of Science.
5. The MATH courses listed above may be replaced by more advanced courses for Honours Mathematics students. For example, instead of **MATH 116** or **MATH 117** or **MATH 127**, a student may take **MATH 137** or **MATH 147**.

Pure Mathematics Minor

Pure Mathematics Minor requirements.

Pure Mathematics

Overview

Mathematics is both an art and a science, and pure mathematics lies at its heart. Many study pure mathematics to pursue knowledge for its own sake and because of its beauty. Others want a strong foundation for graduate work or have a desire to apply their knowledge. Pure Mathematics courses explore the boundary of Mathematics and pure reason; they stimulate the mind, promise intellectual growth, and are an asset to any plan. We hope to impart to our students a love for learning, and to develop their abilities to work independently, and to think critically and creatively. This is achieved with a supportive atmosphere in which all students are challenged to fulfil their academic potential.

Pure Mathematics graduates have been successful in a wide variety of careers. Many go on to graduate school in a wide variety of disciplines. Others go into industry, as the skills they have acquired are recognized by employers as being valuable and transferable.

Pure Mathematics comprises a broad spectrum of Mathematics. Interests of the Department include algebra, number theory, analysis, geometry, topology, and logic, and range from the very classical to the most modern. The Department offers several honours plans including Honours Pure Mathematics, Honours Pure Mathematics/Teaching, and Honours Mathematical Finance. It is also possible to do a Pure Mathematics Minor. All, except the Pure Mathematics/Teaching plan (which is co-op only), are available to both co-op and regular students. Co-operative students should consult the schedule of classes plan and their co-op sequence accordingly.

Many students have found it rewarding to combine Pure Mathematics or Mathematical Finance with another mathematical discipline or with each other. For such students double honours plans are available. A joint honours plan is available for Pure Mathematics. Students from other departments, especially those considering pursuing graduate work (in any area of Mathematics), are encouraged to speak with a Pure Mathematics advisor about which Pure Mathematics courses would be particularly important, interesting, and beneficial for them.

Students who have enjoyed their core mathematics courses and would like to obtain a broad base in mathematics, at a less intensive level than the traditional Honours Pure Mathematics plans, may be interested in pursuing an Honours Mathematical Studies with a Pure Mathematics Minor. Interested students should consult a Pure Mathematics advisor.

A more detailed description of the Department and its plans may be found on the Pure Mathematics website.

Degree Requirements
Pure Mathematics

Students in this plan must fulfil all the requirements in [Table I](#) and [Table II](#). This must include at least 26 math courses, and the following specific requirements:

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

One of

- **MATH 239** Introduction to Combinatorics
- **MATH 249** Introduction to Combinatorics (Advanced Level)

All of

- **PMATH 347** Groups and Rings
- **PMATH 348** Fields and Galois Theory
- **PMATH 351** Real Analysis
- **PMATH 352** Complex Analysis
- **PMATH 365** Differential Geometry
- **PMATH 450** Lebesgue Integration and Fourier Analysis

Three additional 400-level PMATH courses.

Two additional 400-level math courses.

Joint Pure Mathematics

See [Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations](#) for a description of joint plan requirements. Note that both majors designated in such joint plans must be disciplines within the Faculty of Mathematics.

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

One of

- **AMATH 331/PMATH 331** Applied Real Analysis
- **PMATH 333** Introduction to Real Analysis
- **PMATH 351** Real Analysis

One of

- **AMATH 332/PMATH 332** Applied Complex Analysis
- **PMATH 352** Complex Analysis

One of

- **MATH 239** Introduction to Combinatorics
- **MATH 249** Introduction to Combinatorics (Advanced Level)
- An additional PMATH course

Two of

- **PMATH 334** Introduction to Rings and Fields with Applications
- **PMATH 336** Introduction to Group Theory with Applications
- **PMATH 347** Groups and Rings
- **PMATH 348** Fields and Galois Theory

Three additional PMATH courses.

Pure Mathematics/Teaching (co-op only)

Students must be accepted into Math/Teaching to be eligible for this plan.
Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 24 math courses, and the following specific requirements:

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

One of

- **MATH 239** Introduction to Combinatorics
- **MATH 249** Introduction to Combinatorics (Advanced Level)

All of

- **AMATH 231** Calculus 4
- **AMATH 242/CS 371** Introduction to Computational Mathematics

One of

- **AMATH 250** Introduction to Differential Equations
- **AMATH 251** Introduction to Differential Equations (Advanced Level)

One of

- **PMATH 320** Euclidean Geometry
- **PMATH 321** Non-Euclidean Geometry

One of

- **PMATH 334** Introduction to Rings and Fields with Applications
- **PMATH 347** Groups and Rings

One of

- **AMATH 331/PMATH 331** Applied Real Analysis
- **PMATH 333** Introduction to Real Analysis
- **PMATH 351** Real Analysis

Two additional courses chosen from

- **AMATH 332/PMATH 332** Applied Complex Analysis or **PMATH 352** Complex Analysis
- **PMATH 320** Euclidean Geometry
- **PMATH 321** Non-Euclidean Geometr
- **PMATH 330** Introduction to Mathematical Logic
- **PMATH 336** Introduction to Group Theory with Applications or **PMATH 347** Groups and Rings or **PMATH 348** Fields and Galois Theory
- **PMATH 340** Elementary Number Theory

One of

- **CO 380** Mathematical Discovery and Invention
- **CO 480** History of Mathematics

One additional PMATH course.

Three additional 300- or 400-level math courses.

All of

- **MTHEL 206A** Introduction to Mathematics Education
- **PSYCH 101/PSYCH 101R** Introductory Psychology

One of
Mathematical Finance
The Mathematical Finance plan is offered jointly by the Departments of Statistics and Actuarial Science and of Pure Mathematics.

Students in this plan must fulfill all the requirements in **Table I** and **Table II**. This must include at least 26 math courses, and the following specific requirements:

One of

- **MATH 247** Calculus 3 (Advanced Level)
- **MATH 237** Calculus 3 for Honours Mathematics (requires permission of department)

All of

- **AFM 101** Introduction to Financial Accounting or **BUS 127W** Introduction to Financial Accounting
- **AFM 102** Introduction to Managerial Accounting or **BUS 247W** Managerial Accounting
- **AFM 131/ARBUS 101** Introduction to Business in North America or **BUS 111W** Understanding the Business Environment
- **ACTSC 231** Introductory Financial Mathematics
- **ACTSC 371** Introduction to Investments
- **ACTSC 372** Corporate Finance
- **ACTSC 445** Quantitative Enterprise Risk Management
- **ACTSC 446** Mathematics of Financial Markets
- **AMATH 242/CS 371** Introduction to Computational Mathematics or **CS 335** Computational Methods in Business and Finance
- **AMATH 250** Introduction to Differential Equations or **AMATH 350** Differential Equations for Business and Economics
- **ECON 101** Introduction to Microeconomics or **ECON 120W** Introduction to Microeconomics
- **ECON 102** Introduction to Macroeconomics or **ECON 140W** Introduction to Macroeconomics
- **ECON 201** Microeconomic Theory for Business and Policy or **ECON 260W** Intermediate Microeconomic Analysis for Management
- **PMATH 351** Real Analysis
- **PMATH 450** Lebesgue Integration and Fourier Analysis
- **PMATH 451** Measure and Integration
- **STAT 330** Mathematical Statistics
- **STAT 331** Applied Linear Models
- **STAT 333** Applied Probability
- **STAT 443** Forecasting

One of

- **AMATH 351** Ordinary Differential Equations 2
- **CO 250** Introduction to Optimization
- **PMATH 352** Complex Analysis

One of

- **AMATH 353** Partial Differential Equations 1
- **CO 372** Portfolio Optimization Models
- **CS 476** Numeric Computation for Financial Modeling
- **PMATH 453** Functional Analysis

Notes

1. **MATH 147** and **MATH 148** provide highly desirable background for students in the Mathematical Finance plan.
2. **W** courses are offered by Wilfrid Laurier University. See the Laurier Calendar for course details.
3. AMATH 350 is an antirequisite of AMATH 351 and AMATH 353, and choosing this course limits selection in the last "One of" list.

4. Students enrolled in the Business Administration and Mathematics Double Degree plan:
 - may substitute BUS 283W for ACTSC 371
 - may substitute BUS 393W for ACTSC 372
 - are exempt from taking STAT 443, but can count it under the "One of AMATH 353, CO 372, CS 476, PMATH 453" if they choose to take it.

5. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.

Pure Mathematics Minor

One of

- **MATH 103** Introductory Algebra for Arts and Social Science
- **MATH 106** Applied Linear Algebra 1
- **MATH 114** Linear Algebra for Science
- **MATH 115** Linear Algebra for Engineering
- **MATH 136** Linear Algebra 1 for Honours Mathematics
- **MATH 146** Linear Algebra 1 for Honours Mathematics (Advanced Level)

One of

- **MATH 104** Introductory Calculus for Arts and Social Science
- **MATH 116** Calculus 1 for Engineering
- **MATH 117** Calculus 1 for Engineering
- **MATH 127** Calculus 1 for the Sciences
- **MATH 137** Calculus 1 for Honours Mathematics
- **MATH 147** Calculus 1 for Honours Mathematics (Advanced Level)

One of

- **MATH 118** Calculus 2 for Engineering
- **MATH 119** Calculus 2 for Engineering
- **MATH 128** Calculus 2 for the Sciences
- **MATH 138** Calculus 2 for Honours Mathematics
- **MATH 148** Calculus 2 for Honours Mathematics (Advanced Level)

Six PMATH courses. **MATH 212/ECE 206, MATH 217, MATH 227, MATH 237**, or **MATH 247** may be substituted for one of the six.

Notes

1. The Pure Mathematics Minor designation is not available to students outside the Faculty pursuing a Joint Honours academic plans with Mathematics or a Mathematics Minor.

2. Other Linear Algebra and Calculus courses than those listed above may be used to satisfy the "One of" requirements above, with approval of the Pure Math advisor.

Software Engineering

Software Engineering

Over the last few decades there has been a tremendous growth in information technology and its impact on everyday life. Complex software systems have become critical to the operation of many systems in areas such as banking, communications, manufacturing, power generation, and transportation. Progress in computer science and accumulated experience with industrial production of software have led to the emergence of software engineering as a separate discipline. The software engineering discipline has been defined as "the application of systematic, disciplined, quantifiable approaches to the development, operation, and maintenance of software"; that is, the application of engineering to software. The software engineer must apply well-defined techniques, methods, and tools to ensure the correctness, reliability, performance, maintainability, and usability of the software systems being developed.
The technical requirements of these software engineers include a strong foundation in mathematics, natural sciences, and computer science; a broad education in software engineering and design; an understanding of computers and networks; a better appreciation for all aspects of the software engineering life cycle; and the use of methodologies and tools.

The curriculum requirements are not all technical. Industry is also asking for graduates who have facility across several disciplines. Software engineering graduates need to have substantial communications, business, and reasoning skills. Graduates should be able to work in groups; make presentations to technical and non-technical audiences; write coherent well-reasoned reports; and assess the social, technical, legal, and commercial implications of the technology they help to create.

The Honours Software Engineering plan leads to a Bachelor of Software Engineering (BSE) degree. The plan is accredited by both the Canadian Engineering Accreditation Board and the Computer Science Accreditation Council.

Administrative Structure

Leadership for the Software Engineering (SE) plan is provided by a Software Engineering director, normally a faculty member chosen from either Computer Science or Electrical and Computer Engineering with a joint or cross appointment. The director is responsible for the academic issues associated with the plan's operations, including student liaison and advisement. The associate director of Software Engineering assists the director in managing the day-to-day operations and in advising students.

The Software Engineering board oversees the plan's operation and evolution. This inter-faculty board consults with the two home departments and reports to the two faculty councils. The chair of the board alternates between the dean of the Faculty of Engineering and the dean of Mathematics. Ex-officio members of the board include the

- Dean of Engineering
- Dean of Mathematics
- Director of the David R. Cheriton School of Computer Science
- Chair of Electrical and Computer Engineering
- Director (or Associate Director) of Undergraduate Studies (Computer Science)
- Associate Chair of Undergraduate Studies (Electrical and Computer Engineering)
- Software Engineering Director

In addition, the board includes four faculty members, two from Computer Science and two from Electrical and Computer Engineering; and one student from Software Engineering. Faculty members are appointed for two-year, renewable terms; the student member typically serves a two-term appointment.

The Software Engineering Curriculum Committee is responsible for the maintenance and evolution of the curriculum and is chaired by the Software Engineering director. The committee consists of the director and associate director of Software Engineering, six other faculty members (three from Computer Science and three from Electrical and Computer Engineering, including the Electrical and Computer Engineering associate Chair of undergraduate studies and the Computer Science director of undergraduate studies) and one student from Software Engineering. The membership may be drawn from outside of the Board and must include a majority of licensed professional engineers. The Software Engineering Curriculum Committee reports to the Software Engineering Board and consults with both the Computer Science Undergraduate Academic Plans Committee and the Electrical and Computer Engineering Committee.

Admissions

The Software Engineering Board, in consultation with the Faculties of Engineering and Mathematics and their admissions committees, determines the admission requirements for Software Engineering.

For details on admission information, see the Admissions section of this Calendar.

Options, Minors, and Joint Honours

Software Engineering students are considered to be both Mathematics and Engineering students, and can thus take advantage of degree enhancements available to students from either faculty. These enhancements take the form of additional plans such as Options, Minors, and Joint Honours, and include:

- **Artificial Intelligence Specialization** (from Computer Science) or **Artificial Intelligence Option** (from Engineering)
- **Business Specialization** (from Computer Science)
- **Cognitive Science Minor** (a university-wide minor)
- **Computational Fine Arts Specialization** (from Computer Science)
- **Human-Computer Interaction Specialization** (from Computer Science)
Entrepreneurship Option (from Engineering)
Management Sciences Option (from Engineering)

The following Joint Honours Mathematics plans are also approved as additional plans for BSE students:

- Joint Applied Mathematics
- Joint Combinatorics and Optimization
- Joint Pure Mathematics, and
- Joint Statistics

BSE students are not eligible to add Joint Computer Science (Bachelor of Mathematics) or Joint Bachelor of Computer Science plans. BSE students may be eligible to add other options or minors in Mathematics, Engineering, or other faculties, subject to the approval of the Software Engineering associate director. Students should be aware that adding plans will constrain their choice of electives, and may require additional courses. Thus, it is advisable to start preparing for additional plans in the first and second years. Students should also consider the benefits of not adding plans, in that they are better able to personalize their curriculum if they have more flexibility in choosing their electives.

Software Engineering Awards

Term Dean's Honours List
In recognition of outstanding academic achievement in an academic term, the designation Dean's Honours List is awarded to any BSE student who satisfies either of the following criteria:

1. The student is unconditionally promoted at the end of that term, and their term average minus their percentile rank from the top for that academic term is at least 80%.
2. The student completes the academic term with a term average of at least 87% based upon a course load which includes a minimum of 2.5 units with numeric or letter grades and which does not include any failing grades or any INC, IP, or UR grades (see Grades for description).

This designation will be reflected on the official university transcript.

Graduation With Distinction - Dean's Honours List
In recognition of outstanding academic achievement throughout undergraduate studies, the designation Graduation With Distinction - Dean's Honours List is awarded to any BSE graduate who satisfies either of the following criteria:

1. The student has satisfied criterion "1" of the term Dean's Honours List for at least two of the six academic terms preceding graduation, and has a cumulative average over these last six academic terms of at least 80%.
2. The student has a cumulative average (as specified in Mathematics' Faculty Policies) of at least 87% with no record of INC, IP, or UR grades (see Grades for description). Any student who satisfies this criterion will have their name displayed in gold on the walls of the Math & Computer (MC) corridor 1108.

This designation will appear on the student's official transcript and diploma.

Some of the upper-year awards offered by the Faculties of Engineering and Mathematics are open to Software Engineering students. If such an Engineering or Mathematics award specifies that the recipient achieve term “Dean's Honours List” or “Graduating ‘With Distinction - Dean's Honours List’,” then a Software Engineering student must satisfy the appropriate Faculty's Dean's Honours List criteria in order to be eligible for the award.

Honours Software Engineering (Co-operative 8-stream only)
The Software Engineering plan is offered jointly by the David R. Cheriton School of Computer Science and the Department of Electrical and Computer Engineering.

Its curriculum prepares graduates for entry into the software engineering profession. It covers the scientific and mathematical foundations of the discipline, engineering science and engineering design appropriate to the discipline, and exposes students to the ethical and societal issues associated with the discipline. Graduates will be able to apply their knowledge to produce software solutions to specific problems.

Students will be considered members of both the Faculty of Engineering and the Faculty of Mathematics, although for administrative purposes they will be registered officially in a separate unit. Students will be promoted based on the Examination and Promotion rules used in the Faculty of Engineering (see Examinations and Promotions). A non-voting representative from the Faculty of Mathematics will sit on the Engineering Examinations and Promotion Committee, to provide insight into the policies, philosophies,
culture, and requirements that pertain to Math students. The Software Engineering plan is also considered an Honours Mathematics plan for purposes of student access to Math courses. The Software Engineering advisor will advise students on how to achieve their academic goals. Students will graduate with a Bachelor of Software Engineering.

Academic Curriculum

Key for next table

<table>
<thead>
<tr>
<th>Abbreviation/Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>One hour seminar per week</td>
</tr>
<tr>
<td>**</td>
<td>Laboratory is not scheduled and students are expected to find time in open hours to complete their work</td>
</tr>
<tr>
<td>+</td>
<td>Number of contact hours for the tutorial or laboratory are unknown; there may be more components than the class (LEC) section</td>
</tr>
<tr>
<td>Cls</td>
<td>Class</td>
</tr>
<tr>
<td>Tut</td>
<td>Tutorial</td>
</tr>
<tr>
<td>Lab</td>
<td>Laboratory</td>
</tr>
<tr>
<td>0 - 9</td>
<td>Number of hours for Class, Tutorial, Laboratory</td>
</tr>
</tbody>
</table>

The term by term academic component of the curriculum is as follows:
<table>
<thead>
<tr>
<th>Term</th>
<th>Course and Title</th>
<th>Cls</th>
<th>Tut</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Fall</td>
<td>CS 137 Programming Principles</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ECE 105 Classical Mechanics</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>MATH 115 Linear Algebra for Engineering</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH 117 Calculus 1 for Engineering</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH 135 Algebra for Honours Mathematics</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SE 101 Introduction to Methods of Software Engineering*</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1B Winter</td>
<td>SE 102 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS 138 Introduction to Data Abstraction and Implementation</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ECE 106 Electricity and Magnetism</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>ECE 124 Digital Circuits and Systems</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>ECE 140 Linear Circuits</td>
<td>3</td>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>MATH 119 Calculus 2 for Engineering</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2A Fall</td>
<td>SE 201 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CHE 102 Chemistry for Engineers</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS 241 Foundations of Sequential Programs</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ECE 222 Digital Computers</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>SE 212 Logic and Computation</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>STAT 206 Statistics for Software Engineering (see note 5)</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Communication Elective (see note 6)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2B Spring</td>
<td>SE 202 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS 240 Data Structures and Data Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 247 Software Engineering Principles **</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSCI 261 Engineering Economics: Financial Management for Engineers</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH 239 Introduction to Combinatorics</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elective (see note 1)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>WKRPT 200 Work-term Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPM 000 CR/NCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A Winter</td>
<td>SE 301 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS 341 Algorithms</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 349 User Interfaces **</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 213 Signals, Systems, and Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SE 350 Operating Systems</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>SE 465 Software Testing and Quality Assurance **</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (see note 1)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3B Fall</td>
<td>SE 302 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CS 343 Concurrent and Parallel Programming</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 348 Introduction to Database Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SE 380 Introduction to Feedback Control</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>SE 390 Design Project Planning **</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SE 464 Software Design and Architectures **</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (see note 1)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>WKRPT 300 Work-term Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A Spring</td>
<td>SE 401 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ECE 358 Computer Networks</td>
<td>3</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>SE 463 Software Requirements Specification and Analysis **</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SE 490 Design Project 1 **</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Two Electives (see notes 1 and 2)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>WKRPT 400 Work-term Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B Winter</td>
<td>SE 402 Seminar</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SE 491 Design Project 2 **</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Five Electives (see notes 1 and 2)</td>
<td>3</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Three Advanced Technical Electives (ATE)
The advanced technical electives comprise fourth-year course offerings in CS or ECE. Students are advised to plan ahead when selecting ATEs. Most ATEs are not offered every term, and some ATEs have other ATEs as prerequisites. Other courses may be approved by the academic advisors.

One of the following CS courses (CS List):

- CS 442 Principles of Programming Languages
- CS 444 Compiler Construction
- CS 448 Database Systems Implementation
- CS 449 Human-Computer Interaction
- CS 450 Computer Architecture
- CS 451 Data-Intensive Distributed Computing
- CS 452 Real-time Programming
- CS 454 Distributed Systems
- CS 457 System Performance Evaluation
- CS 458 Computer Security and Privacy
- CS 462 Formal Languages and Parsing
- CS 466 Algorithm Design and Analysis
- CS 480 Introduction to Machine Learning
- CS 484 Computational Vision
- CS 485 Statistical and Computational Foundations of Machine Learning
- CS 486 Introduction to Artificial Intelligence
- CS 487 Introduction to Symbolic Computation
- CS 488 Introduction to Computer Graphics

One of the following ECE courses (ECE list):

- ECE 409 Cryptography and System Security
- ECE 416 Advanced Topics in Networking
- ECE 417 Image Processing
- ECE 418 Communications Networks
- ECE 423 Embedded Computer Systems
- ECE 429 Computer Architecture
- ECE 454 Distributed Computing
- ECE 455 Embedded Software
- ECE 457A Cooperative and Adaptive Algorithms
- ECE 457B Fundamentals of Computational Intelligence
- ECE 458 Computer Security
- ECE 459 Programming for Performance
- ECE 481 Digital Control Systems
- ECE 486 Robot Dynamics and Control
- ECE 488 Multivariable Control Systems

One additional course from the CS and ECE lists above

Two Science Electives (SCE)

Normally these courses are in the natural sciences, chosen from the list below. Alternate courses may be chosen in consultation with the SE academic advisors.

Science Elective Courses:

- BIOL 101, BIOL 110, BIOL 120, (BIOL 130 and BIOL 130L), BIOL 150, BIOL 165, BIOL 239, BIOL 240, BIOL 273, CHE 161, (CHEM 262 and CHEM 262L), EARTH 121, EARTH 122, PHYS 124, PHYS 234, PHYS 263, PHYS 275, PHYS 334, PHYS 375, SCI 238, SCI 250

Three Linkage Electives (LE)

At least one from each of the areas of Societal Issues, Humanities and Social Sciences, and Communications, as specified below. Students should be aware that these courses may have enrolment limits, or may not fit their schedules.

One course on Societal Issues:

- CS 492, Complementary Studies Elective List A

One course on Communication:

- ENGL 109, ENGL 129R/EMLS 129R, EMLS 101R, EMLS 102R, SPCOM 100, SPCOM 223

One additional course on Humanities and Social Sciences:

- Complementary Studies Elective List C
Notes

1. There are 11 electives. As detailed above, these electives must include three advanced technical electives, two science electives, and three linkage electives. For their remaining three electives, students may choose to take additional courses from the elective lists above or any other 0.5 credit course(s) for which they meet the requisites. Advanced Technical Electives may not be taken before the 3A term.

2. Students may choose to take three electives in 4A and four electives in 4B, instead of two in 4A and five in 4B.

3. Students enrolled in Software Engineering will only be permitted to use the WD and WF (see Grades for descriptions) provisions used in the Faculty of Mathematics to withdraw from extra courses taken above and beyond the degree requirements.

4. With the permission of the academic advisors, ECE 358 may be taken in 3A or 3B and replaced with a technical elective in 4A if required as a prerequisite for an ATE.

5. Students may replace STAT 206 and one of their unrestricted electives with the combination of STAT 230 and STAT 231.

6. The linkage elective on communication is normally taken in the 2A term. It must be completed with a grade of at least 60% prior to enrolling in the 3A term.

Communication Skills Requirement

Strong communication skills are essential to academic, professional, and personal success. As such, Software Engineering students must take a course from the Linkage Elective Communication List in the 2A term. This elective list parallels the Math Communication Skills Requirements List 1. In addition to the communication elective, Software Engineering students must satisfy the Technical Presentation Milestone (described below) in the 2B term. Communication skills are further developed and evaluated in three work-term reports (described below) and in SE 101, SE 390, SE 490, and SE 491.

Three Work-term Reports (WKRPT)

Work-term reports are listed as part of the Software Engineering curriculum; they are treated as courses that a BSE student must successfully complete to satisfy the plan requirements. They appear on all grade reports and transcripts, but they are not used in calculating term averages.

Each work-term report requirement is satisfied by earning a grade of satisfactory or better on a work-term report related to the previous term's co-op employment. Each work-term report must be submitted at the beginning of the academic term in which it is listed as a course; it is due seven days after the first official day of lectures. Reports submitted after the due date will receive a failing grade and will be evaluated the following academic term.

Failed work-term reports contribute to a student's accumulated failed-course count. They also appear on a student's transcript. Once a failure has cleared, the original grade will still be listed on the transcript but will be annotated with a credit (CR) in the "sup" field.

Technical Presentation Milestone (TPM)

Each student registered in Software Engineering is required to satisfy the Technical Presentation Milestone (TPM) during their 2B term. If admitted to Software Engineering after 2B, then the student must satisfy this requirement before the end of the first academic term in the plan. The details of the TPM requirement are provided during the student's 2A term, so that the student can plan appropriately for the presentation during the work term preceding 2B. A student who is interested in formal instruction on how to develop and deliver an oral presentation should consider taking SPCM 223.

Five Professional Development (PD) Courses

Five professional development courses are required as described in the BASc and BSE Specific Degree Requirements section on Work Terms. Two core PD courses are specified for all engineering students: PD 20 and PD 21. Due to the importance of understanding the legal and ethical ramifications of software development, Software Engineering students are also required to take PD 10. This course replaces one of the PD electives, such that Software Engineering students have three core PD courses (PD 20, PD 21, and PD 10) and two PD elective courses. Software Engineering students are automatically enrolled in PD 20, PD 21, and PD 10 but must enrol in the elective PD courses using the normal Quest enrolment process.

Statistics

Overview

Statistics deals with the collection and analysis of data. Statistical methods are extensively used in biology, medicine, health sciences, agriculture, business, finance, economics, engineering, and many other fields.
Claims based on statistical arguments appear daily in the press, and it is difficult to assess these claims intelligently without knowledge of statistical methods.

The statistician's first job is to determine what data to collect, and how to collect it so that it will be without bias or distortion. These problems are discussed in the design of experiments and sample surveys. Statistical inference is concerned with inferring what the population is like on the basis of a small amount of data (the sample). The link between population and sample is provided by probability theory, which forms an important part of the statistics curriculum. Developing and assessing statistical models to describe the variation in some response in terms of other explanatory variables, and applications of these models is discussed throughout the statistics curriculum.

Other areas of pure and applied mathematics find applications in statistics. Calculus and linear algebra are used in the undergraduate program; abstract algebra, combinatorics, difference and differential equations, analysis, and measure theory are required in more advanced work. Many statistical analyses involve the computer, so a good background in computing is highly desirable.

Degree Requirements

Statistics

Students in this plan must fulfil all the requirements in [Table I](#) and [Table II](#). This must include at least 26 math courses, and the following specific requirements:

One of

- MATH 237 Calculus 3 for Honours Mathematics
- MATH 247 Calculus 3 (Advanced Level)

All of

- [ENGL 378](#) / [MTHEL 300](#) Professional Communications in Statistics and Actuarial Science
- STAT 330 Mathematical Statistics
- STAT 331 Applied Linear Models
- STAT 332 Sampling and Experimental Design
- STAT 333 Applied Probability

One of

- MATH 239 Introduction to Combinatorics
- MATH 249 Introduction to Combinatorics (Advanced Level)
- AMATH 231 Calculus 4
- AMATH 242 / CS 371 Introduction to Computational Mathematics
- AMATH 250 Introduction to Differential Equations

Two 400-level STAT courses.

One additional 300- or 400-level STAT course.

One of

- One additional 400-level STAT course
- CS 457 System Performance Evaluation
- CS 485 Statistical and Computational Foundations of Machine Learning
- CS 486 Introduction to Artificial Intelligence

Note: CS 457, CS 485, and CS 486 are open only to those with a major in Computer Science (CS).

Four additional 300- or 400-level math courses.

At least three additional math courses for a minimum of 26 math courses.

Notes

1. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.
2. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333; STAT 373 is not an acceptable substitute for STAT 331.
3. Business Administration and Mathematics Double Degree students may substitute BUS 362W for ENGL 378/MTHEL 300.

Joint Statistics

See Bachelor of Computer Science and Bachelor of Mathematics Academic Plan Combinations for a description of joint plan requirements. Note that both majors designated in such joint plans must be disciplines within the Faculty of Mathematics.

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

All of

- **ENGL 378/MTHEL 300** Professional Communications in Statistics and Actuarial Science
- **STAT 330** Mathematical Statistics
- **STAT 331** Applied Linear Models
- **STAT 333** Applied Probability

Two 400-level STAT courses.

One additional 300- or 400-level STAT course.

Notes

1. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.
2. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333; STAT 373 is not an acceptable substitute for STAT 331.
3. Business Administration and Mathematics Double Degree students may substitute BUS 362W for ENGL 378/MTHEL 300.

Biostatistics

Students in this plan must fulfil all the requirements in Table I and Table II. This must include at least 26 math courses, and the following specific requirements:

One of

- **MATH 237** Calculus 3 for Honours Mathematics
- **MATH 247** Calculus 3 (Advanced Level)

All of

- **ENGL 378/MTHEL 300** Professional Communications in Statistics and Actuarial Science
- **STAT 330** Mathematical Statistics
- **STAT 331** Applied Linear Models
- **STAT 332** Sampling and Experimental Design
- **STAT 333** Applied Probability
- **STAT 337** Introduction to Medical Statistics
- **STAT 431** Generalized Linear Models and their Applications
- **STAT 437** Statistical Methods for Life History Analysis
- **STAT 438** Advanced Methods in Biostatistics

One of
AMATH 231 Calculus 4
AMATH 242/CS 371 Introduction to Computational Mathematics
AMATH 250 Introduction to Differential Equations
MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

One of

BIOL 239 Genetics
HLTH 101 Introduction to Health 1

Two additional 300- or 400-level STAT courses.
Two additional 300- or 400-level math courses.
At least three additional math courses for a minimum of 26 math courses.

Notes

1. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.
 - STAT 372 for STAT 332.
 - AMATH 350 for AMATH 250.
2. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333; STAT 373 is not an acceptable substitute for STAT 331.
3. Business Administration and Mathematics Double Degree students may substitute BUS 362W for ENGL 378/MTHEL 300.

Data Science
Data Science is the study of methods to obtain insight from available data in order to understand, predict, and improve business strategy, products and services, marketing campaigns, medicine, public health and safety, and many other pursuits. Such methods involve elements of both Statistics and Computer Science, with a focus on three foundational components: (i) database management, (ii) statistics and machine learning, and (iii) distributed and parallel systems.

The Data Science plan is guided by a joint curriculum committee. This committee is chaired by a director of data science, normally a faculty member chosen from either academic unit with the agreement of both. Along with the director, the committee includes four faculty representatives, two appointed by each unit. In addition, the associate chair of undergraduate studies for Statistics and Actuarial Science and the director of undergraduate studies for Computer Science serve ex officio on the committee. Curriculum changes introduced by the committee must receive approval from both units before being approved at the faculty level. In addition to chairing the curriculum committee, the director has responsibility for promoting the plan, both internally and externally, and for overall coordination.

The Faculty of Mathematics offers two honours plans in Data Science, a Bachelor of Mathematics (BMath - Data Science) and a Bachelor of Computer Science (BCS - Data Science). The Data Science plans are offered jointly by the Department of Statistics and Actuarial Science and by the David R. Cheriton School of Computer Science. Students in the two plans graduate with a background in both Computer Science and Statistics, taking a combination of required and elective courses that together provide a solid foundation in this emerging area.

Students in this plan must satisfy all requirements for Honours Statistics and must satisfy the following additional constraints on course selection:

One of

CS 136 Elementary Algorithm Design and Data Abstraction
CS 146 Elementary Algorithm Design and Data Abstraction (Advanced Level)
MATH 239 Introduction to Combinatorics
MATH 249 Introduction to Combinatorics (Advanced Level)

All of
CS 240 Data Structures and Data Management
CS 241 Foundations of Sequential Programs
CS 245 Logic and Computation
CS 246 Object-Oriented Software Development
CS 251 Computer Organization and Design
CS 341 Algorithms
CS 348 Introduction to Database Management
STAT 341 Computational Statistics and Data Analysis

One of
CS 431 Data-Intensive Distributed Analytics
CS 451 Data-Intensive Distributed Computing

One of
CS 480 Introduction to Machine Learning
CS 485 Statistical and Computational Foundations of Machine Learning
CS 486 Introduction to Artificial Intelligence
STAT 441 Statistical Learning - Classification

Two additional courses from the following list
CS 480 Introduction to Machine Learning
CS 485 Statistical and Computational Foundations of Machine Learning
CS 486 Introduction to Artificial Intelligence
STAT 431 Generalized Linear Models and their Applications
STAT 440 Computational Inference
STAT 441 Statistical Learning - Classification
STAT 442 Data Visualization
STAT 443 Forecasting
STAT 444 Statistical Learning - Function Estimation

Statistics Minor
This minor is only open to students within the Faculty of Mathematics.

All of
MATH 237 Calculus 3 for Honours Mathematics or **MATH 247** Calculus 3 (Advanced Level)

Three of
STAT 330 Mathematical Statistics
STAT 331 Applied Linear Models
STAT 332 Sampling and Experimental Design
STAT 333 Applied Probability

Two additional 300- or 400-level STAT courses.

Notes

1. Students currently or previously enrolled in the following plans: Business Administration and Mathematics Double Degree, Mathematics/Business Administration, Mathematics/Financial Analysis and Risk Management, Information Technology Management, and Mathematical Optimization – Business Specialization may substitute:
 - STAT 371 for STAT 331.
 - STAT 372 for STAT 332.

2. STAT 334 is not an acceptable substitute for STAT 330 or STAT 333; STAT 373 is not an acceptable substitute for STAT 331.
Faculty Policies

The Mathematics section of this Calendar contains regulations and requirements that must be satisfied to obtain a credential offered by the Faculty. All undergraduate students are also responsible for following the University Policies, Guidelines, and Academic Regulations section of this Calendar.

Degree requirements and policies that apply to students enrolled in the Bachelor of Software Engineering (BSE) degree program are included in the Software Engineering program description. Also see Degree Requirements for definitions of the basic terms used in this section.

- Academic Enrolment Blocks (Holds)
- Academic Standing within the Faculty
- Averages for Math Students
- Major Averages for Math Students
- Co-op Regulations
- Repeat Rule
- Course Load
- Discretion in the Application of Policies
- Exceptions
- Extended Absences and Withdrawals
- Other Course Rules

Academic Enrolment Blocks (Holds)
In some instances a student will be blocked from enrolling in classes. Any student with an enrolment block (hold) should speak to their academic advisor concerning their situation. A student will be blocked, regardless of their academic standing for the term, in the following circumstances:

- after the term in which a student reaches 1.5 failed or excluded units; or
- after the term in which a student enrolled in Mathematical Studies reaches 3.0 failed or excluded units; or
- after the first term in which a student reaches or exceeds 4.0 units of unusable course attempts; or
- when the "First Course" of the Communication Skills requirement is not completed before enrolling in 2A.

Students may be blocked from enrolling in courses for reasons other than those listed here.

Academic Standing within the Faculty
This section specifies the rules that determine a student’s academic standing. A student’s standing determines whether a student is able to proceed in the Faculty or in their chosen plan, how many courses they are able to take in the next term, etc.
Conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any of the following:</td>
<td>Required to withdraw – may not continue in Faculty</td>
</tr>
</tbody>
</table>
| • The student has more than 4.0 units of failed or excluded courses, or
 • The student’s total unit value of unusable course attempts exceeds 5.0 units, or
 • In the opinion of S&P, the student is unlikely to profit from further study in the Faculty or is not making satisfactory progress toward fulfilling degree requirements. | |
| No standing above applies, and all of the following: | Must change to Mathematical Studies; CAV low |
| • The student’s cumulative average (CAV) is lower than 60%, and
 • The student has more than 2.0 units and less than or equal to 4.0 units of failed or excluded courses. | |
| No standing above applies, and all of the following: | Must change to Mathematical Studies; MAV low |
| • The student’s major average (MAV) is lower than 60%, and
 • The student has more than 2.0 units and less than or equal to 4.0 units of failed or excluded courses. | |
| No standing above applies, and the student has more than 2.0 units and less than or equal to 4.0 units of failed or excluded courses. | Must change to Mathematical Studies |
| No standing above applies, and any of the following: | Must change academic plan - plan average(s) too low |
| • Standing from the previous full-time term or equivalent is Conditional or Probation/Conditional and any MAV is below the required minimum, or
 • Any MAV is below the required minimum and the plan’s administrators do not give permission for the student to continue, or
 • Any MAV is more than 5% lower than the required minimum, or
 • The student is in an Actuarial Science plan and special major average (SMAV) is below the required minimum. | |
| No standing above applies, and all of the following: | Probation/ Conditional - Must raise averages |
| • The student’s CAV is lower than 60%, and
 • At least one MAV is between the required minimum and 5% lower than that, and
 • The plan’s administrators have given permission for the student to continue. | |
| No standing above applies, and the student’s CAV is lower than 60%. | Probation - Must raise overall program average |
| No standing above applies, at least one MAV is between the required minimum and 5% lower than that, and the plan’s administrators have given permission for the student to continue. | Conditional - Must raise plan average(s) |
| No standing above applies, and the student’s CAV is lower than 80%. | Good |
| No standing above applies, and the student’s CAV is at least 80%. | Excellent |

The following table describes the implications of the standings listed above.
### Standing	Implications
Required to withdraw – may not continue in Faculty | The student is no longer eligible to study as a Faculty of Mathematics student. This standing normally means that a student is no longer eligible for any subsequent degree studies in the Faculty of Mathematics. Students who are unable to satisfy the major average admission or continuation standard for any honours plan will be required to withdraw from the Math Faculty. However, a student may submit a petition to S&P to enrol in one final term of non degree studies. Such petitions are likely to be granted only if the student is requesting a non-degree term of courses selected to enhance the chances for admission to a program of study outside the Faculty, either at the University of Waterloo or at some other post-secondary institution. A student who is required to withdraw may graduate with a general degree under the Honours Fallback Provision if they meet the requirements when they are required to withdraw.

Must change to Mathematical Studies; CAV low | The student is no longer eligible to continue in their current honours plan and their plan/major has been changed to Mathematical Studies. Also, the student is not currently meeting the Faculty’s CAV standards. If enrolled in a co-op plan, the student will normally be suspended from the Co-operative Education and Career Action (CECA) employment process during their next academic term.

Must change to Mathematical Studies; MAV low | The student is no longer eligible to continue in their current honours plan and their plan/major has been changed to Mathematical Studies. Also, the student is not currently meeting the Faculty’s MAV standards. If enrolled in a co-op plan, the student will normally be suspended from the CECA employment process during their next academic term.

Must change to Mathematical Studies; CAV/MAV low | The student is no longer eligible to continue in their current honours plan and their plan/major has been changed to Mathematical Studies. Also, the student is not currently meeting the Faculty’s CAV and MAV standards. If enrolled in a co-op plan, the student will normally be suspended from the CECA employment process during their next academic term.

Must change to Mathematical Studies | The student is no longer eligible to continue in their current honours plan and their plan/major has been changed to Mathematical Studies.

Must change academic plan - plan average(s) too low | The student must change to a different plan/major.

Probation/Conditional - Must raise averages | The implications of both Probationary standing and Conditional standing apply.

Probation - Must raise overall program average | The student is not currently meeting the Faculty’s standards. If enrolled in a co-op plan, the student will normally be suspended from the CECA employment process during their next academic term.

Conditional - Must raise plan average(s) | The student is not currently meeting their plan’s standards. If the student’s standing does not improve (e.g., by raising their MAV(s) to meet the minimum requirements), they will be required to change their plan.

Good | The student may continue with their studies.

Excellent | The student may continue with their studies, and their maximum course load is increased to 3.25 units.

Averages for Math Students
The Faculty of Mathematics computes several averages that are used to determine a student’s “standing” within the Faculty. The averages are:

- **Cumulative Average (CAV):** The average grade of all courses taken by a student that meet the following criteria:
 - was taken while the student was enrolled at the University of Waterloo,
- is not a specifically excluded course,
- is eligible for credit towards the student’s degree (e.g., ECON 211 would not be included in the CAV because all Math students are barred from taking it) and towards their particular plan (e.g., CS 330 would not be included in a computer science major’s average because it is only for non-majors).

Term Average (TAV): The TAV is just like the CAV except that the courses included are limited to those taken in a specific term. A TAV is computed for each term in which a student is enrolled in the Faculty of Mathematics.

Major Average (MAV): Courses included in the MAV and average requirements are contained in the table below.

Special Major Average (SMAV): Some plans have a special major average, or SMAV. A SMAV is a kind of MAV. The specific courses in a SMAV are defined in the next section.

Notes

1. Courses taken in fall 2013 or later cannot be excluded.
2. Failing grades less than 32 and grades of DNW (did not write exam), FTC (failure to complete), NMR (no mark reported), and WF (withdraw/failure) are counted as 32 for average-calculation purposes.

Major Averages for Math Students

<table>
<thead>
<tr>
<th>Major/Plan</th>
<th>Average(s)</th>
<th>Relevant Courses</th>
<th>Minimum Required Average</th>
<th>Minimum Courses for MAV or SMAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuarial Science</td>
<td>SMAV</td>
<td>ACTSC 231, 232, STAT 230/240, 231/241, and all 300/400-level math courses</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics, Combinatorics and Optimization, Mathematical Optimization, Mathematical Physics, Pure Mathematics, Statistics</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>65%</td>
<td>3</td>
</tr>
<tr>
<td>Computing and Financial Management</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All courses from the Faculty of Arts</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science</td>
<td>MAV</td>
<td>CS 136, 138, 146, all subsequent CS major courses, as well as CS courses numbered 600 and higher, CO 487, ECE 222,429, SE 212, 240, 382, 463, 464, 465, and STAT 440</td>
<td>60%</td>
<td>2</td>
</tr>
<tr>
<td>Information Technology Management</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All BUS, COMM, MSCI, and STV courses</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics/Business Administration</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All AFM, BUS, COMM, ECON, HRM, MSCI, and MTHEL courses</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics/Chartered Professional Accountancy</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All AFM, COMM, ECON, and MSCI courses (this special major average is calculated after the 1B term and includes courses cross-listed with these labels)</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Economics</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All ECON courses</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Finance</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics/Financial Analysis and Risk Management</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SMAV</td>
<td>All ACTSC, AFM, BUS, COMM, ECON, and MATBUS courses (including courses cross-listed with these labels)</td>
<td>70%</td>
<td>3</td>
</tr>
<tr>
<td>All plans not listed above</td>
<td>MAV</td>
<td>All math courses at any level</td>
<td>60%</td>
<td>3</td>
</tr>
</tbody>
</table>
Co-op Regulations

General Regulations

- Co-operative mathematics students are expected to follow the normal academic/work-term sequence appropriate to their plan from admission through to graduation.
- Students admitted at the 1A level, with the exception of those in the Mathematics/Chartered Professional Accountancy and Bachelor of Business Administration (BBA)/Bachelor of Mathematics (BMath) Double Degree plans, will normally have eight academic terms and six work terms.
- Students may not end their sequence with a work term.
- Students’ requests to re-arrange their sequence will normally be approved if all the criteria listed on the Faculty of Mathematics Sequence Change Form are met. Students who alter their sequence without obtaining prior approval may be required to withdraw from the co-op system. It is the student’s responsibility to deal with any timetabling difficulties that may arise and to select courses for subsequent terms.

Professional Development (PD) Courses

- As specified in Table 1, co-op students are required to complete a minimum of five different Professional Development (PD) courses.
- PD 1 is required in the academic term prior to the first work term and PD 11 is required during the first work term.
- Students in the Bachelor of Mathematics in Computer Science and Bachelor of Computer Science plans must include PD 10, Professional Responsibility in Computing, as one of their PD courses.
- With the exception of PD 1, PD courses are normally taken during co-op work terms.
- Students are required to take a PD course each work term until the requirement is completed.

Work Reports

- Co-op students must submit a work report following every work term until they have completed four acceptable work reports. Successful completion of PD 11 meets the requirement for a first work report.

Co-op Standing Rules

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Co-op Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any of the following:</td>
<td>Withdraw from co-op</td>
</tr>
<tr>
<td>• The student is required to withdraw from the Faculty, or</td>
<td></td>
</tr>
<tr>
<td>• The student is on academic probation after a full-time academic term for the second time, or</td>
<td></td>
</tr>
<tr>
<td>• Two unemployed or failed work-term opportunities, or</td>
<td></td>
</tr>
<tr>
<td>• Three missing or failed PD courses, or</td>
<td></td>
</tr>
<tr>
<td>• Two missing or failed work reports, or</td>
<td></td>
</tr>
<tr>
<td>• The S&P Committee deems that the student is unlikely to profit from further participation in co-op or is not making satisfactory progress toward fulfilling co-op degree requirements. Presentation of such requests to S&P result in a notification to the student and an opportunity to reply prior to S&P’s decision.</td>
<td></td>
</tr>
</tbody>
</table>

No standing above applies, and any of the following:

- The student is on academic probation after a full-time term for the first time, or
- Two missing or failed PD courses and one missing or failed work report.

No standing above applies, and in the most recent work term, the Employer Evaluation was Excellent or Outstanding.

No standing above applies.

The following table describes the implications of the standings listed above.
<table>
<thead>
<tr>
<th>Co-op Standing</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdraw from co-op</td>
<td>The student must withdraw from co-op, and will be transferred to the most closely matching regular plan for which the student is admissible.</td>
</tr>
<tr>
<td>Co-op probation</td>
<td>The student must meet with a co-op advisor to determine conditions necessary to remediate their co-op standing. A student who is on probation in co-op solely because of their academic standing will be placed in Good co-op standing if they return to Good or Excellent academic standing after one full-time academic term without missing or failing any PD courses or work reports. The student’s access to the co-op employment process will be blocked pending completion of remedial requirements.</td>
</tr>
<tr>
<td>Good co-op standing</td>
<td>Eligible to continue in co-op.</td>
</tr>
<tr>
<td>Excellent co-op standing</td>
<td>Eligible to continue in co-op.</td>
</tr>
</tbody>
</table>

Courses on a Work Term
- Co-op students on a work term are limited to one course (0.5 unit), unless they have written support from their employer to take two courses (1.0 unit). COOP, PD, and WKRPT courses are not included in these limits.

Transferring into Co-op
- Late transfers to the co-op system are considered once per term. Admission is very competitive and is a function of availability and demonstrated academic performance at the university level.
- Regular students in the Faculty of Mathematics may apply to transfer to the co-op system of study in their 1B term. To be eligible, at the time of admission to co-op, such students must have successfully completed between 4.0 and 6.0 units, including transfer credits.
- Non-co-op students from other faculties at the University of Waterloo may apply to transfer to the co-op system in the Faculty of Mathematics at the end of their 1B term, as part of the internal transfer process.
- Non-co-op students external to the University of Waterloo are eligible to apply for co-op in the Faculty of Mathematics only if, at the time of admission, they have successfully completed no more than 3.0 units of math transfer credits and between 4.0 and 6.0 transfer credits overall.
- Applications to transfer to co-op from co-op students external to the University of Waterloo will be considered on a case-by-case basis.

Repeat Rule
Students are limited to a maximum of three attempts per course. A course attempt is defined in Table 1.

Course Load
- The standard course load is five courses per term (2.5 units). A student may take up to 2.75 units without special permission.
- Students who have a cumulative average of 80% or more and are in Excellent standing have a maximum course load of 3.25 units. Honours co-op students should not enrol in six courses with a view to graduating in fewer than eight terms because co-op students must complete at least eight full-time terms to graduate with the co-op designation.
- If a student has courses with INC (incomplete course work) grades on their record, the total unit weight of those courses and the courses enrolled for the current term may not normally exceed 3.25 units. A student may obtain permission from an academic advisor to exceed this limit if an INC will not be completed in the current term because the course is not offered.
- If, during a student’s first 1A term in the Faculty of Mathematics, a student fails one or more courses and has a CAV of less than 65%, then the student’s course load for the following term will be reduced to 2.0 units. Students who will likely be required to withdraw and are also enrolled in the subsequent term may continue in a non-degree term enrolled in a maximum of 2.5 units. Exceptions may be brought to the associate dean by plan/program advisors, and will be dealt with on a case-by-case basis.

Discretion in the Application of Policies
The Faculty may, in extenuating circumstances, make exceptions to its policies. For example, students who experience difficulties beyond their control, such as serious illness, may be allowed to continue in a plan...
when a strict interpretation of policy would force them out. Students should consult their academic advisor to determine whether their circumstances are appropriate to warrant asking for an exception.

Normally, the S&P Committee considers petitions for exceptions to Faculty or University policies and regulations. Students wishing to petition S&P should consult their academic advisor.

Exceptions

For students near graduation, any student who has:

1. exceeded the limit for failed or excluded units in Table I, or
2. accumulated more than 5.0 units of unusable course attempts, and
3. has no more than 0.5 units remaining to satisfy degree requirements, may enrol in one additional term. The student will still qualify for an Honours degree if, at the end of that term, they:
 - satisfied all degree requirements other than the failure or attempt limit,
 - have credit for at least 1.5 units in the additional term, and
 - have no failed or excluded courses, WDs (withdrew, no credit granted), or CLCs (no credit granted, in average) in that term.

No student may take advantage of this provision more than once.

Extended Absences and Withdrawals

Readmission

A student who has completed at least one term of study and who has been inactive (i.e., not registered as a candidate for a Faculty of Mathematics degree or on an approved Letter of Permission) for at least five consecutive academic terms must apply for readmission.

For example, a student whose last term of enrolment was spring 2016 would not need to apply for readmission if they returned to study in winter 2018 or earlier. However, if this student remained inactive until spring 2018 or later, then they would need to apply for readmission.

Application for readmission must include a résumé covering the inactive period, and must include transcripts from any post-secondary institutions attended in the interim. If the student is readmitted, Faculty policies in effect at the time of readmission will apply unless otherwise stated by the Faculty.

Other Course Rules

Courses on Letter of Permission

Students in Good or Excellent standing are normally permitted to take non-math courses at other universities on a part-time basis during terms off campus, provided that the courses are not explicitly required for their particular plan. A Letter of Permission may not be used for any Faculty of Mathematics course. Students wishing to take courses at other universities must submit a completed Letter of Permission Application to the Registrar's Office before taking each course. The S&P Committee will not approve courses taken elsewhere for degree credit after the fact.

Courses taken on a Letter of Permission will be recorded on a student's academic record as transfer credits (CR - credit granted) or transfer failures (TF - transfer failure) as appropriate. A grade of 60 or higher will be recorded as a credit and a grade of less than 50 will be recorded as a failure. Grades of 50-59 will result in the course not being recorded on a student's record.

It will be the student's responsibility to ensure that an official transcript from the host institution is sent to the University of Waterloo within two months of the completion of the course. Otherwise, a transfer failure will be automatically recorded. Any changes a student wishes to make to an authorized Letter of Permission must be approved in advance by the S&P Committee.

Course Prerequisites

At any time prior to the completion of lectures, if the Faculty discovers that a student has enrolled in a course offered by the Faculty without the appropriate prerequisites and without being granted an override of those prerequisites, the Faculty may purge the student's registration in the course. Such purging may be done at the request of the instructor, the department offering the course, or the Faculty, but not without the consent of the instructor.

Double Counting of Courses

With the exception of specially approved double-degree plans (e.g., BBA/BMath Double Degree plan with Wilfrid Laurier University), the Faculty of Mathematics does not allow students to have more than 50% of the course units that they are counting for Mathematics Faculty degree credit be ones that have previously
been used, or that are being used simultaneously, to obtain a second degree from another University of Waterloo faculty or from another university.

Policy for Late Switches from Advanced MATH Courses to the Regular Equivalents

At any time before the end of the “Drop, WD period” period, students may switch from an advanced section CO, MATH, and STAT course to the equivalent course at the regular honours level:

<table>
<thead>
<tr>
<th>Advanced Section</th>
<th>Regular Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 255</td>
<td>CO 250</td>
</tr>
<tr>
<td>MATH 145</td>
<td>MATH 135</td>
</tr>
<tr>
<td>MATH 146</td>
<td>MATH 136</td>
</tr>
<tr>
<td>MATH 147</td>
<td>MATH 137</td>
</tr>
<tr>
<td>MATH 148</td>
<td>MATH 138</td>
</tr>
<tr>
<td>MATH 245</td>
<td>MATH 235</td>
</tr>
<tr>
<td>MATH 247</td>
<td>MATH 237</td>
</tr>
<tr>
<td>MATH 249</td>
<td>MATH 239</td>
</tr>
<tr>
<td>STAT 240</td>
<td>STAT 230</td>
</tr>
<tr>
<td>STAT 241</td>
<td>STAT 231</td>
</tr>
</tbody>
</table>

Students making this kind of switch will normally only be graded based on course elements from the regular section course. Any grades from the advanced section course will be disregarded. Students are responsible for making up any material in the regular section course that they may have missed, and are required to discuss their situation with the regular section instructor as soon as possible after making the switch.

Students in MATH 147 who have transfer credit for MATH 137 may elect instead to drop the class, retroactive to the first day of lectures. If such a student chooses to switch to MATH 137 instead, then they will forfeit any transfer credit for MATH 137.

Students in MATH 247 who have already gained credit for MATH 237 may elect instead to drop the class, retroactive to the first day of lectures.

The David R. Cheriton School of Computer Science has a special rule for any first-year student who has never been previously registered for full-time study at a degree-granting post-secondary institution (e.g., a university or college) and wishes to transfer from CS 135 to CS 115 (fall and winter terms) or from CS 145 to CS 135 (fall term).